Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On the length of the shortest path in a sparse Barak–Erdős graph. / Mallein, Bastien; Tesemnikov, Pavel.
в: Statistics and Probability Letters, Том 190, 109634, 11.2022.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On the length of the shortest path in a sparse Barak–Erdős graph
AU - Mallein, Bastien
AU - Tesemnikov, Pavel
N1 - Funding Information: The research of both authors was supported by joint grant ( 19-51-15001 ) of the Russian Foundation for Basic Research and from the French CNRS ’ PRC grant. Publisher Copyright: © 2022 Elsevier B.V.
PY - 2022/11
Y1 - 2022/11
N2 - We consider an inhomogeneous version of the Barak–Erdős graph, i.e. a directed Erdős–Rényi random graph on {1,…,n} with no loop. Given f a Riemann-integrable non-negative function on [0,1]2 and γ>0, we define G(n,f,γ) as the random graph with vertex set {1,…,n} such that for each ii,j(n)=[Formula presented], independently of any other edge. We denote by Ln the length of the shortest path between vertices 1 and n, and take interest in the asymptotic behaviour of Ln as n→∞.
AB - We consider an inhomogeneous version of the Barak–Erdős graph, i.e. a directed Erdős–Rényi random graph on {1,…,n} with no loop. Given f a Riemann-integrable non-negative function on [0,1]2 and γ>0, we define G(n,f,γ) as the random graph with vertex set {1,…,n} such that for each ii,j(n)=[Formula presented], independently of any other edge. We denote by Ln the length of the shortest path between vertices 1 and n, and take interest in the asymptotic behaviour of Ln as n→∞.
KW - Chain length
KW - Chen–Stein method
KW - Directed Erdos–Renyi graph
KW - Food chain
KW - Parallel processing
KW - Random directed graph
UR - http://www.scopus.com/inward/record.url?scp=85136268589&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/a20cb0e3-18f5-3319-9ed5-8f84b7f2be8b/
U2 - 10.1016/j.spl.2022.109634
DO - 10.1016/j.spl.2022.109634
M3 - Article
AN - SCOPUS:85136268589
VL - 190
JO - Statistics and Probability Letters
JF - Statistics and Probability Letters
SN - 0167-7152
M1 - 109634
ER -
ID: 36958088