Standard

On the “Heap” problem. / Puzarenko, V. G.; Smeliansky, R. L.

в: Russian Journal of Mathematical Physics, Том 26, № 2, 01.04.2019, стр. 180-184.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Puzarenko, VG & Smeliansky, RL 2019, 'On the “Heap” problem', Russian Journal of Mathematical Physics, Том. 26, № 2, стр. 180-184. https://doi.org/10.1134/S1061920819020055

APA

Puzarenko, V. G., & Smeliansky, R. L. (2019). On the “Heap” problem. Russian Journal of Mathematical Physics, 26(2), 180-184. https://doi.org/10.1134/S1061920819020055

Vancouver

Puzarenko VG, Smeliansky RL. On the “Heap” problem. Russian Journal of Mathematical Physics. 2019 апр. 1;26(2):180-184. doi: 10.1134/S1061920819020055

Author

Puzarenko, V. G. ; Smeliansky, R. L. / On the “Heap” problem. в: Russian Journal of Mathematical Physics. 2019 ; Том 26, № 2. стр. 180-184.

BibTeX

@article{2b9d6cc2da894e3a9e8492e0a7029dac,
title = "On the “Heap” problem",
abstract = "In connection with the relationship of the heap paradox with quantum mechanics pointed out by V. P. Maslov, the feasibility and complexity of algorithms for counting very large sets in small time intervals is studied.",
author = "Puzarenko, {V. G.} and Smeliansky, {R. L.}",
year = "2019",
month = apr,
day = "1",
doi = "10.1134/S1061920819020055",
language = "English",
volume = "26",
pages = "180--184",
journal = "Russian Journal of Mathematical Physics",
issn = "1061-9208",
publisher = "Maik Nauka-Interperiodica Publishing",
number = "2",

}

RIS

TY - JOUR

T1 - On the “Heap” problem

AU - Puzarenko, V. G.

AU - Smeliansky, R. L.

PY - 2019/4/1

Y1 - 2019/4/1

N2 - In connection with the relationship of the heap paradox with quantum mechanics pointed out by V. P. Maslov, the feasibility and complexity of algorithms for counting very large sets in small time intervals is studied.

AB - In connection with the relationship of the heap paradox with quantum mechanics pointed out by V. P. Maslov, the feasibility and complexity of algorithms for counting very large sets in small time intervals is studied.

UR - http://www.scopus.com/inward/record.url?scp=85066630288&partnerID=8YFLogxK

U2 - 10.1134/S1061920819020055

DO - 10.1134/S1061920819020055

M3 - Article

AN - SCOPUS:85066630288

VL - 26

SP - 180

EP - 184

JO - Russian Journal of Mathematical Physics

JF - Russian Journal of Mathematical Physics

SN - 1061-9208

IS - 2

ER -

ID: 20532729