Standard

On the Existence of Two Affine-Equivalent Frameworks with Prescribed Edge Lengths in Euclidean d-Space. / Alexandrov, V. A.

в: Siberian Mathematical Journal, Том 64, № 6, 11.2023, стр. 1273-1278.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Alexandrov VA. On the Existence of Two Affine-Equivalent Frameworks with Prescribed Edge Lengths in Euclidean d-Space. Siberian Mathematical Journal. 2023 нояб.;64(6):1273-1278. doi: 10.1134/S0037446623060022

Author

Alexandrov, V. A. / On the Existence of Two Affine-Equivalent Frameworks with Prescribed Edge Lengths in Euclidean d-Space. в: Siberian Mathematical Journal. 2023 ; Том 64, № 6. стр. 1273-1278.

BibTeX

@article{d0a650db806a4f6a8940e81ce0f2aef3,
title = "On the Existence of Two Affine-Equivalent Frameworks with Prescribed Edge Lengths in Euclidean d-Space",
abstract = "We study the existence of the two affine-equivalent bar-and-jointframeworks in Euclidean d-space which have some prescribed combinatorialstructure and edge lengths.We show that the existence problem is always solvable theoretically andexplain why to propose a practical algorithm for solving the problem is impossible.",
keywords = "514.1, Cauchy rigidity theorem, Cayley–Menger determinant, Euclidean d-space, affine-equivalent frameworks, bar-and-joint framework, graph",
author = "Alexandrov, {V. A.}",
note = "The research was carried out within the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0006).",
year = "2023",
month = nov,
doi = "10.1134/S0037446623060022",
language = "English",
volume = "64",
pages = "1273--1278",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "6",

}

RIS

TY - JOUR

T1 - On the Existence of Two Affine-Equivalent Frameworks with Prescribed Edge Lengths in Euclidean d-Space

AU - Alexandrov, V. A.

N1 - The research was carried out within the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0006).

PY - 2023/11

Y1 - 2023/11

N2 - We study the existence of the two affine-equivalent bar-and-jointframeworks in Euclidean d-space which have some prescribed combinatorialstructure and edge lengths.We show that the existence problem is always solvable theoretically andexplain why to propose a practical algorithm for solving the problem is impossible.

AB - We study the existence of the two affine-equivalent bar-and-jointframeworks in Euclidean d-space which have some prescribed combinatorialstructure and edge lengths.We show that the existence problem is always solvable theoretically andexplain why to propose a practical algorithm for solving the problem is impossible.

KW - 514.1

KW - Cauchy rigidity theorem

KW - Cayley–Menger determinant

KW - Euclidean d-space

KW - affine-equivalent frameworks

KW - bar-and-joint framework

KW - graph

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85178873656&origin=inward&txGid=b6d15ac3cbad263b94dbc1f0dbddee5d

UR - https://www.mendeley.com/catalogue/f9bee595-131d-38d5-a80f-b765180c803f/

U2 - 10.1134/S0037446623060022

DO - 10.1134/S0037446623060022

M3 - Article

VL - 64

SP - 1273

EP - 1278

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 6

ER -

ID: 59343837