Standard

ON ROTATION OF A FLUID LAYER. / Zhuravleva, E. N.; Pukhnachev, V. V.

в: Journal of Applied Mechanics and Technical Physics, Том 63, № 6, 2022, стр. 988-994.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Zhuravleva, EN & Pukhnachev, VV 2022, 'ON ROTATION OF A FLUID LAYER', Journal of Applied Mechanics and Technical Physics, Том. 63, № 6, стр. 988-994. https://doi.org/10.1134/S0021894422060116

APA

Zhuravleva, E. N., & Pukhnachev, V. V. (2022). ON ROTATION OF A FLUID LAYER. Journal of Applied Mechanics and Technical Physics, 63(6), 988-994. https://doi.org/10.1134/S0021894422060116

Vancouver

Zhuravleva EN, Pukhnachev VV. ON ROTATION OF A FLUID LAYER. Journal of Applied Mechanics and Technical Physics. 2022;63(6):988-994. doi: 10.1134/S0021894422060116

Author

Zhuravleva, E. N. ; Pukhnachev, V. V. / ON ROTATION OF A FLUID LAYER. в: Journal of Applied Mechanics and Technical Physics. 2022 ; Том 63, № 6. стр. 988-994.

BibTeX

@article{8da66f0b5132459eb6c0fa83f1af62f4,
title = "ON ROTATION OF A FLUID LAYER",
abstract = "A problem of rotation of a fluid layer bounded by a solid plane and a free surface parallel to this plane is considered. The fluid can be an ideal or a viscous fluid. Conditions for the existence of solutions of the corresponding problems for the Euler and Navier–Stokes equations on an infinite time interval are formulated. Examples of the numerical solution of the problem are presented.",
keywords = "exact solutions, fluid flow with a free boundary",
author = "Zhuravleva, {E. N.} and Pukhnachev, {V. V.}",
note = "Публикация для корректировки.",
year = "2022",
doi = "10.1134/S0021894422060116",
language = "English",
volume = "63",
pages = "988--994",
journal = "Journal of Applied Mechanics and Technical Physics",
issn = "0021-8944",
publisher = "Maik Nauka-Interperiodica Publishing",
number = "6",

}

RIS

TY - JOUR

T1 - ON ROTATION OF A FLUID LAYER

AU - Zhuravleva, E. N.

AU - Pukhnachev, V. V.

N1 - Публикация для корректировки.

PY - 2022

Y1 - 2022

N2 - A problem of rotation of a fluid layer bounded by a solid plane and a free surface parallel to this plane is considered. The fluid can be an ideal or a viscous fluid. Conditions for the existence of solutions of the corresponding problems for the Euler and Navier–Stokes equations on an infinite time interval are formulated. Examples of the numerical solution of the problem are presented.

AB - A problem of rotation of a fluid layer bounded by a solid plane and a free surface parallel to this plane is considered. The fluid can be an ideal or a viscous fluid. Conditions for the existence of solutions of the corresponding problems for the Euler and Navier–Stokes equations on an infinite time interval are formulated. Examples of the numerical solution of the problem are presented.

KW - exact solutions

KW - fluid flow with a free boundary

UR - https://www.mendeley.com/catalogue/dc15beb8-52e7-391b-95d4-f6e159b22e35/

U2 - 10.1134/S0021894422060116

DO - 10.1134/S0021894422060116

M3 - Article

VL - 63

SP - 988

EP - 994

JO - Journal of Applied Mechanics and Technical Physics

JF - Journal of Applied Mechanics and Technical Physics

SN - 0021-8944

IS - 6

ER -

ID: 55696208