Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On Rationality of Generating Function for the Number of Spanning Trees in Circulant Graphs. / Mednykh, A. D.; Mednykh, I. A.
в: Algebra Colloquium, Том 27, № 1, 01.03.2020, стр. 87-94.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On Rationality of Generating Function for the Number of Spanning Trees in Circulant Graphs
AU - Mednykh, A. D.
AU - Mednykh, I. A.
N1 - Publisher Copyright: © 2020 Academy of Mathematics and Systems Science, Chinese Academy of Sciences. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/3/1
Y1 - 2020/3/1
N2 - Let F(x) = n=1s1,s2, ...,sk(n)xn be the generating function for the number τs1,s2, ...,sk(n) of spanning trees in the circulant graph Cn(s1, s2, ..., sk). We show that F(x) is a rational function with integer coefficients satisfying the property F(x) = F(1/x). A similar result is also true for the circulant graphs C2n(s1, s2, ..., sk, n) of odd valency. We illustrate the obtained results by a series of examples.
AB - Let F(x) = n=1s1,s2, ...,sk(n)xn be the generating function for the number τs1,s2, ...,sk(n) of spanning trees in the circulant graph Cn(s1, s2, ..., sk). We show that F(x) is a rational function with integer coefficients satisfying the property F(x) = F(1/x). A similar result is also true for the circulant graphs C2n(s1, s2, ..., sk, n) of odd valency. We illustrate the obtained results by a series of examples.
KW - Chebyshev polynomial
KW - circulant graph
KW - generating function
KW - spanning tree
KW - JACOBIAN GROUP
KW - COMPLEXITY
KW - FORMULAS
UR - http://www.scopus.com/inward/record.url?scp=85080125218&partnerID=8YFLogxK
U2 - 10.1142/S1005386720000085
DO - 10.1142/S1005386720000085
M3 - Article
AN - SCOPUS:85080125218
VL - 27
SP - 87
EP - 94
JO - Algebra Colloquium
JF - Algebra Colloquium
SN - 1005-3867
IS - 1
ER -
ID: 23666804