Standard

On radicals of Novikov algebras. / Панасенко, Александр Сергеевич.

в: Communications in Algebra, Том 52, № 1, 01.2024, стр. 140-147.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Панасенко, АС 2024, 'On radicals of Novikov algebras', Communications in Algebra, Том. 52, № 1, стр. 140-147. https://doi.org/10.1080/00927872.2023.2235420

APA

Vancouver

Панасенко АС. On radicals of Novikov algebras. Communications in Algebra. 2024 янв.;52(1):140-147. Epub 2023 июль 21. doi: 10.1080/00927872.2023.2235420

Author

Панасенко, Александр Сергеевич. / On radicals of Novikov algebras. в: Communications in Algebra. 2024 ; Том 52, № 1. стр. 140-147.

BibTeX

@article{d28eb10014d04c34819c675013245111,
title = "On radicals of Novikov algebras",
abstract = "We show that in a prime nonassociative Novikov algebra every nonzero ideal is non-associative. We prove that Baer (and Andrunakievich) radical and the largest left quasiregular ideal coincide in finite dimensional Novikov algebras over a field of characteristic 0 or algebraically closed field of odd characteristic. We show non-existence of right quasiregular radical in finite dimensional Novikov algebras.",
keywords = "алгебра Новикова, радикал, первичная алгебра, полупервичная алгебра, конечномерная алгебра, квазирегулярный идеал, Novikov algebra, finite dimensional algebra, prime algebra, quasiregular ideal, radical, semiprime algebra",
author = "Панасенко, {Александр Сергеевич}",
note = "This work was supported by the Program of fundamental scientific researches of Russian Academy of Sciences, project FWNF-2022-0002.",
year = "2024",
month = jan,
doi = "10.1080/00927872.2023.2235420",
language = "English",
volume = "52",
pages = "140--147",
journal = "Communications in Algebra",
issn = "0092-7872",
publisher = "Taylor and Francis Ltd.",
number = "1",

}

RIS

TY - JOUR

T1 - On radicals of Novikov algebras

AU - Панасенко, Александр Сергеевич

N1 - This work was supported by the Program of fundamental scientific researches of Russian Academy of Sciences, project FWNF-2022-0002.

PY - 2024/1

Y1 - 2024/1

N2 - We show that in a prime nonassociative Novikov algebra every nonzero ideal is non-associative. We prove that Baer (and Andrunakievich) radical and the largest left quasiregular ideal coincide in finite dimensional Novikov algebras over a field of characteristic 0 or algebraically closed field of odd characteristic. We show non-existence of right quasiregular radical in finite dimensional Novikov algebras.

AB - We show that in a prime nonassociative Novikov algebra every nonzero ideal is non-associative. We prove that Baer (and Andrunakievich) radical and the largest left quasiregular ideal coincide in finite dimensional Novikov algebras over a field of characteristic 0 or algebraically closed field of odd characteristic. We show non-existence of right quasiregular radical in finite dimensional Novikov algebras.

KW - алгебра Новикова

KW - радикал

KW - первичная алгебра

KW - полупервичная алгебра

KW - конечномерная алгебра

KW - квазирегулярный идеал

KW - Novikov algebra

KW - finite dimensional algebra

KW - prime algebra

KW - quasiregular ideal

KW - radical

KW - semiprime algebra

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85165487360&origin=inward&txGid=cdeb557afd4229ea5f28e9aa54ed1eda

UR - https://www.mendeley.com/catalogue/d153c3fe-3bdb-3126-a97e-28c274f00803/

U2 - 10.1080/00927872.2023.2235420

DO - 10.1080/00927872.2023.2235420

M3 - Article

VL - 52

SP - 140

EP - 147

JO - Communications in Algebra

JF - Communications in Algebra

SN - 0092-7872

IS - 1

ER -

ID: 57181733