Standard

On Quasilinear Anisotropic Parabolic Equations with Time-Dependent Exponents. / Tersenov, Al S.; Tersenov, Ar S.

в: Siberian Mathematical Journal, Том 61, № 1, 01.2020, стр. 159-177.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Tersenov, AS & Tersenov, AS 2020, 'On Quasilinear Anisotropic Parabolic Equations with Time-Dependent Exponents', Siberian Mathematical Journal, Том. 61, № 1, стр. 159-177. https://doi.org/10.1134/S0037446620010140

APA

Vancouver

Tersenov AS, Tersenov AS. On Quasilinear Anisotropic Parabolic Equations with Time-Dependent Exponents. Siberian Mathematical Journal. 2020 янв.;61(1):159-177. doi: 10.1134/S0037446620010140

Author

Tersenov, Al S. ; Tersenov, Ar S. / On Quasilinear Anisotropic Parabolic Equations with Time-Dependent Exponents. в: Siberian Mathematical Journal. 2020 ; Том 61, № 1. стр. 159-177.

BibTeX

@article{17fe79ffd60747a39d789b290160b4ae,
title = "On Quasilinear Anisotropic Parabolic Equations with Time-Dependent Exponents",
abstract = "The Cauchy-Dirichlet problem for the anisotropic parabolic equation with variable exponents in the presence of a nonlinear source and gradient term is considered. We prove the existence and uniqueness of a weak solution that is Lipschitz continuous in the space variables.",
keywords = "anisotropic parabolic equation, weak solution with bounded spatial derivatives, WEAK SOLUTIONS, EXISTENCE, UNIQUENESS, CONTINUITY, P(X",
author = "Tersenov, {Al S.} and Tersenov, {Ar S.}",
year = "2020",
month = jan,
doi = "10.1134/S0037446620010140",
language = "English",
volume = "61",
pages = "159--177",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "1",

}

RIS

TY - JOUR

T1 - On Quasilinear Anisotropic Parabolic Equations with Time-Dependent Exponents

AU - Tersenov, Al S.

AU - Tersenov, Ar S.

PY - 2020/1

Y1 - 2020/1

N2 - The Cauchy-Dirichlet problem for the anisotropic parabolic equation with variable exponents in the presence of a nonlinear source and gradient term is considered. We prove the existence and uniqueness of a weak solution that is Lipschitz continuous in the space variables.

AB - The Cauchy-Dirichlet problem for the anisotropic parabolic equation with variable exponents in the presence of a nonlinear source and gradient term is considered. We prove the existence and uniqueness of a weak solution that is Lipschitz continuous in the space variables.

KW - anisotropic parabolic equation

KW - weak solution with bounded spatial derivatives

KW - WEAK SOLUTIONS

KW - EXISTENCE

KW - UNIQUENESS

KW - CONTINUITY

KW - P(X

U2 - 10.1134/S0037446620010140

DO - 10.1134/S0037446620010140

M3 - Article

VL - 61

SP - 159

EP - 177

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 1

ER -

ID: 26097511