Standard

On Open and α-Covering Mappings. / Storozhuk, K. V.

в: Siberian Mathematical Journal, Том 59, № 2, 01.03.2018, стр. 357-362.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Storozhuk, KV 2018, 'On Open and α-Covering Mappings', Siberian Mathematical Journal, Том. 59, № 2, стр. 357-362. https://doi.org/10.1134/S0037446618020180

APA

Vancouver

Storozhuk KV. On Open and α-Covering Mappings. Siberian Mathematical Journal. 2018 март 1;59(2):357-362. doi: 10.1134/S0037446618020180

Author

Storozhuk, K. V. / On Open and α-Covering Mappings. в: Siberian Mathematical Journal. 2018 ; Том 59, № 2. стр. 357-362.

BibTeX

@article{e30535207e8043f2bc21cf2aae8fbb4d,
title = "On Open and α-Covering Mappings",
abstract = "We prove that an open mapping of compact metric spaces can be made α-covering if the metric of the image is changed. An example is given in which this cannot be achieved by changing the metric in the departure space.",
keywords = "covering mapping, multivalued mapping, open mapping, submetry, COINCIDENCE POINTS",
author = "Storozhuk, {K. V.}",
year = "2018",
month = mar,
day = "1",
doi = "10.1134/S0037446618020180",
language = "English",
volume = "59",
pages = "357--362",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "2",

}

RIS

TY - JOUR

T1 - On Open and α-Covering Mappings

AU - Storozhuk, K. V.

PY - 2018/3/1

Y1 - 2018/3/1

N2 - We prove that an open mapping of compact metric spaces can be made α-covering if the metric of the image is changed. An example is given in which this cannot be achieved by changing the metric in the departure space.

AB - We prove that an open mapping of compact metric spaces can be made α-covering if the metric of the image is changed. An example is given in which this cannot be achieved by changing the metric in the departure space.

KW - covering mapping

KW - multivalued mapping

KW - open mapping

KW - submetry

KW - COINCIDENCE POINTS

UR - http://www.scopus.com/inward/record.url?scp=85046635562&partnerID=8YFLogxK

U2 - 10.1134/S0037446618020180

DO - 10.1134/S0037446618020180

M3 - Article

AN - SCOPUS:85046635562

VL - 59

SP - 357

EP - 362

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 2

ER -

ID: 13333920