Standard

On new examples of hypocritical groups. / Skresanov, Saveliy Vyacheslavovich.

в: Siberian Electronic Mathematical Reports, Том 15, 63, 2018, стр. 305-313.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Skresanov, SV 2018, 'On new examples of hypocritical groups', Siberian Electronic Mathematical Reports, Том. 15, 63, стр. 305-313. https://doi.org/10.17377/semi.2018.15.027

APA

Skresanov, S. V. (2018). On new examples of hypocritical groups. Siberian Electronic Mathematical Reports, 15, 305-313. [63]. https://doi.org/10.17377/semi.2018.15.027

Vancouver

Skresanov SV. On new examples of hypocritical groups. Siberian Electronic Mathematical Reports. 2018;15:305-313. 63. doi: 10.17377/semi.2018.15.027

Author

Skresanov, Saveliy Vyacheslavovich. / On new examples of hypocritical groups. в: Siberian Electronic Mathematical Reports. 2018 ; Том 15. стр. 305-313.

BibTeX

@article{b1f91880cbd4422bab1b46ad25cb93f6,
title = "On new examples of hypocritical groups",
abstract = "A group G is called hypocritical if whenever G lies in a locally finite variety generated by a section closed class of groups X, then G belongs to X. We prove that some coprime extensions of a p-group are hypocritical. The first example is given when such a p-group is nonabelian.",
keywords = "Extraspecial p-groups, Finite groups, Locally finite varieties",
author = "Skresanov, {Saveliy Vyacheslavovich}",
note = "Publisher Copyright: {\textcopyright} 2018 Sobolev Institute of Mathematics.",
year = "2018",
doi = "10.17377/semi.2018.15.027",
language = "English",
volume = "15",
pages = "305--313",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - On new examples of hypocritical groups

AU - Skresanov, Saveliy Vyacheslavovich

N1 - Publisher Copyright: © 2018 Sobolev Institute of Mathematics.

PY - 2018

Y1 - 2018

N2 - A group G is called hypocritical if whenever G lies in a locally finite variety generated by a section closed class of groups X, then G belongs to X. We prove that some coprime extensions of a p-group are hypocritical. The first example is given when such a p-group is nonabelian.

AB - A group G is called hypocritical if whenever G lies in a locally finite variety generated by a section closed class of groups X, then G belongs to X. We prove that some coprime extensions of a p-group are hypocritical. The first example is given when such a p-group is nonabelian.

KW - Extraspecial p-groups

KW - Finite groups

KW - Locally finite varieties

UR - http://www.scopus.com/inward/record.url?scp=85074917815&partnerID=8YFLogxK

UR - https://elibrary.ru/item.asp?id=36998691

U2 - 10.17377/semi.2018.15.027

DO - 10.17377/semi.2018.15.027

M3 - Article

AN - SCOPUS:85074917815

VL - 15

SP - 305

EP - 313

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

M1 - 63

ER -

ID: 34614451