Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On Losik Classes of Diffeomorphism Pseudogroups. / Bazaikin, Yaroslav V.; Efremenko, Yury D.; Galaev, Anton S.
в: Results in Mathematics, Том 80, № 8, 235, 12.11.2025.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On Losik Classes of Diffeomorphism Pseudogroups
AU - Bazaikin, Yaroslav V.
AU - Efremenko, Yury D.
AU - Galaev, Anton S.
N1 - A.G. was supported by the grant 24-10031K of the Czech Science Foundation (GAČR).
PY - 2025/11/12
Y1 - 2025/11/12
N2 - Let P be a pseudogroup of local diffeomorphisms of an n-dimensional smooth manifold M. Following Losik we consider characteristic classes of the quotient M/P as elements of the de Rham cohomology of the second order frame bundles over M/P coming from the generators of the Gelfand-Fuchs cohomology. We provide explicit expressions for the classes that we call Godbillon-Vey-Losik class and the first Chern-Losik class. Reducing the frame bundles we construct bundles over M/P such that the Godbillon-Vey-Losik class is represented by a volume form on a space of dimension 2n+1, and the first Chern-Losik class is represented by a symplectic form on a space of dimension 2n. Examples in dimension 2 are considered.
AB - Let P be a pseudogroup of local diffeomorphisms of an n-dimensional smooth manifold M. Following Losik we consider characteristic classes of the quotient M/P as elements of the de Rham cohomology of the second order frame bundles over M/P coming from the generators of the Gelfand-Fuchs cohomology. We provide explicit expressions for the classes that we call Godbillon-Vey-Losik class and the first Chern-Losik class. Reducing the frame bundles we construct bundles over M/P such that the Godbillon-Vey-Losik class is represented by a volume form on a space of dimension 2n+1, and the first Chern-Losik class is represented by a symplectic form on a space of dimension 2n. Examples in dimension 2 are considered.
KW - Diffeomorphism pseudogroup
KW - Gelfand formal geometry
KW - Gelfand-Fuchs cohomology
KW - Godbillon-Vey-Losik class
KW - characteristic classes
UR - https://www.scopus.com/pages/publications/105021518742
UR - https://www.mendeley.com/catalogue/d60cfbea-eb84-348f-9b18-f64f673c4367/
U2 - 10.1007/s00025-025-02553-9
DO - 10.1007/s00025-025-02553-9
M3 - Article
VL - 80
JO - Results in Mathematics
JF - Results in Mathematics
SN - 1422-6383
IS - 8
M1 - 235
ER -
ID: 72229789