Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On Jacobian group and complexity of the Y-graph. / Kwon, Y. S.; Mednykh, A. D.; Mednykh, I. A.
в: Siberian Electronic Mathematical Reports, Том 19, № 2, 2022, стр. 662-673.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On Jacobian group and complexity of the Y-graph
AU - Kwon, Y. S.
AU - Mednykh, A. D.
AU - Mednykh, I. A.
N1 - Funding Information: The first author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B05048450). The study of the second and the third authors was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project FWNF 2020-0005). Received November, 1, 2021, published September, 6, 2022. Publisher Copyright: © 2022 Kwon Y.S., Mednykh A.D., Mednykh I.A.
PY - 2022
Y1 - 2022
N2 - In the present paper we suggest a simple approach for counting Jacobian group of the Y -graph Y (n; k; l;m): In the case Y (n; 1; 1; 1) the structure of the Jacobian group will be find explicitly. Also, we obtain a closed formula for the number of spanning trees of Y -graph in terms of Chebyshev polynomials and give its asymtotics.
AB - In the present paper we suggest a simple approach for counting Jacobian group of the Y -graph Y (n; k; l;m): In the case Y (n; 1; 1; 1) the structure of the Jacobian group will be find explicitly. Also, we obtain a closed formula for the number of spanning trees of Y -graph in terms of Chebyshev polynomials and give its asymtotics.
KW - Chebyshev polynomial
KW - Jacobian group
KW - Laplacian matrix
KW - Mahler measure
KW - Spanning tree
UR - http://www.scopus.com/inward/record.url?scp=85141143608&partnerID=8YFLogxK
U2 - 10.33048/semi.2022.19.055
DO - 10.33048/semi.2022.19.055
M3 - Article
AN - SCOPUS:85141143608
VL - 19
SP - 662
EP - 673
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
IS - 2
ER -
ID: 39129086