Standard

On homotopy braids. / Bardakov, Valeriy G.; Vershinin, Vladimir V.; Wu, Jie.

в: Forum Mathematicum, Том 34, № 2, 01.03.2022, стр. 447-454.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Bardakov, VG, Vershinin, VV & Wu, J 2022, 'On homotopy braids', Forum Mathematicum, Том. 34, № 2, стр. 447-454. https://doi.org/10.1515/forum-2021-0069

APA

Bardakov, V. G., Vershinin, V. V., & Wu, J. (2022). On homotopy braids. Forum Mathematicum, 34(2), 447-454. https://doi.org/10.1515/forum-2021-0069

Vancouver

Bardakov VG, Vershinin VV, Wu J. On homotopy braids. Forum Mathematicum. 2022 март 1;34(2):447-454. doi: 10.1515/forum-2021-0069

Author

Bardakov, Valeriy G. ; Vershinin, Vladimir V. ; Wu, Jie. / On homotopy braids. в: Forum Mathematicum. 2022 ; Том 34, № 2. стр. 447-454.

BibTeX

@article{963276d2de9a4ab891c83b48be73c87c,
title = "On homotopy braids",
abstract = "The homotopy braid group Bn is the subject of the paper. First, the linearity of Bn over the integers is proved. Then we prove that the group B3 is torsion free. ",
keywords = "Homotopy braid, reduced free group, word problem",
author = "Bardakov, {Valeriy G.} and Vershinin, {Vladimir V.} and Jie Wu",
note = "The first author is supported by the Ministry of Science and Higher Education of Russia (agreement No. 075-02-2021-1392). The last author is partially supported by High-level Scientific Research Foundation of Hebei Province and a grant (No. 11971144) of NSFC of China. Publisher Copyright: {\textcopyright} 2022 De Gruyter. All rights reserved.",
year = "2022",
month = mar,
day = "1",
doi = "10.1515/forum-2021-0069",
language = "English",
volume = "34",
pages = "447--454",
journal = "Forum Mathematicum",
issn = "0933-7741",
publisher = "Walter de Gruyter",
number = "2",

}

RIS

TY - JOUR

T1 - On homotopy braids

AU - Bardakov, Valeriy G.

AU - Vershinin, Vladimir V.

AU - Wu, Jie

N1 - The first author is supported by the Ministry of Science and Higher Education of Russia (agreement No. 075-02-2021-1392). The last author is partially supported by High-level Scientific Research Foundation of Hebei Province and a grant (No. 11971144) of NSFC of China. Publisher Copyright: © 2022 De Gruyter. All rights reserved.

PY - 2022/3/1

Y1 - 2022/3/1

N2 - The homotopy braid group Bn is the subject of the paper. First, the linearity of Bn over the integers is proved. Then we prove that the group B3 is torsion free.

AB - The homotopy braid group Bn is the subject of the paper. First, the linearity of Bn over the integers is proved. Then we prove that the group B3 is torsion free.

KW - Homotopy braid

KW - reduced free group

KW - word problem

UR - http://www.scopus.com/inward/record.url?scp=85123984626&partnerID=8YFLogxK

U2 - 10.1515/forum-2021-0069

DO - 10.1515/forum-2021-0069

M3 - Article

AN - SCOPUS:85123984626

VL - 34

SP - 447

EP - 454

JO - Forum Mathematicum

JF - Forum Mathematicum

SN - 0933-7741

IS - 2

ER -

ID: 35427902