Standard

On finite groups isospectral to U 3(3). / Lytkin, Yu V.

в: Siberian Mathematical Journal, Том 58, № 4, 01.07.2017, стр. 633-643.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Lytkin, YV 2017, 'On finite groups isospectral to U 3(3)', Siberian Mathematical Journal, Том. 58, № 4, стр. 633-643. https://doi.org/10.1134/S0037446617040097

APA

Lytkin, Y. V. (2017). On finite groups isospectral to U 3(3). Siberian Mathematical Journal, 58(4), 633-643. https://doi.org/10.1134/S0037446617040097

Vancouver

Lytkin YV. On finite groups isospectral to U 3(3). Siberian Mathematical Journal. 2017 июль 1;58(4):633-643. doi: 10.1134/S0037446617040097

Author

Lytkin, Yu V. / On finite groups isospectral to U 3(3). в: Siberian Mathematical Journal. 2017 ; Том 58, № 4. стр. 633-643.

BibTeX

@article{7ef66e02057842319e729e4179b71970,
title = "On finite groups isospectral to U 3(3)",
abstract = "The spectrum of a finite group is the set of all its element orders. A finite group G is called critical with respect to a subset ω of natural numbers, if ω coincides with the spectrum of G and does not coincide with the spectrum of any proper section of G. We study the structure of groups isospectral to a simple unitary group PSU(3, 3). In particular, we give a description of the finite groups critical with respect to the spectrum of PSU(3, 3).",
keywords = "critical group, finite group, nonabelian simple group, spectrum, UNRECOGNIZABILITY, SPECTRUM",
author = "Lytkin, {Yu V.}",
note = "Publisher Copyright: {\textcopyright} 2017, Pleiades Publishing, Ltd.",
year = "2017",
month = jul,
day = "1",
doi = "10.1134/S0037446617040097",
language = "English",
volume = "58",
pages = "633--643",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "4",

}

RIS

TY - JOUR

T1 - On finite groups isospectral to U 3(3)

AU - Lytkin, Yu V.

N1 - Publisher Copyright: © 2017, Pleiades Publishing, Ltd.

PY - 2017/7/1

Y1 - 2017/7/1

N2 - The spectrum of a finite group is the set of all its element orders. A finite group G is called critical with respect to a subset ω of natural numbers, if ω coincides with the spectrum of G and does not coincide with the spectrum of any proper section of G. We study the structure of groups isospectral to a simple unitary group PSU(3, 3). In particular, we give a description of the finite groups critical with respect to the spectrum of PSU(3, 3).

AB - The spectrum of a finite group is the set of all its element orders. A finite group G is called critical with respect to a subset ω of natural numbers, if ω coincides with the spectrum of G and does not coincide with the spectrum of any proper section of G. We study the structure of groups isospectral to a simple unitary group PSU(3, 3). In particular, we give a description of the finite groups critical with respect to the spectrum of PSU(3, 3).

KW - critical group

KW - finite group

KW - nonabelian simple group

KW - spectrum

KW - UNRECOGNIZABILITY

KW - SPECTRUM

UR - http://www.scopus.com/inward/record.url?scp=85028674138&partnerID=8YFLogxK

U2 - 10.1134/S0037446617040097

DO - 10.1134/S0037446617040097

M3 - Article

AN - SCOPUS:85028674138

VL - 58

SP - 633

EP - 643

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 4

ER -

ID: 9916755