Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On connected components of fractal cubes. / Vaulin, Dmitrii Alekseevich; Drozdov, Dmitry Alekseevich; Tetenov, Andrei Viktorovich.
в: Trudy Instituta Matematiki i Mekhaniki UrO RAN, Том 26, № 2, 01.07.2020, стр. 98-107.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On connected components of fractal cubes
AU - Vaulin, Dmitrii Alekseevich
AU - Drozdov, Dmitry Alekseevich
AU - Tetenov, Andrei Viktorovich
N1 - Ваулин Д.А., Дроздов Д.А., Тетенов А.В. О связных компонентах фрактальных кубов // Тр. Ин-та математики и механики УрО РАН. - 2020. - Т.26. - № 2. - С. 98-107
PY - 2020/7/1
Y1 - 2020/7/1
N2 - The paper shows an essential difference between fractal squares and fractal cubes. The topological classification of fractal squares proposed in 2013 by K.-S. Lau et al. was based on analyzing the properties of the Z2-periodic extension H = F + Z2of a fractal square F and of its complement Hc= R2\ H. A fractal square F ⊂ R2contains a connected component different from a line segment or a point if and only if the set Hccontains a bounded connected component. We show the existence of a fractal cube F in R3for which the set Hc= R3\H is connected whereas the set Q of connected components Kαof F possesses the following properties: Q is a totally disconnected self-similar subset of the hyperspace C(R3), it is bi-Lipschitz isomorphic to the Cantor set C1/5, all the sets Kα+Z3are connected and pairwise disjoint, and the Hausdorff dimensions dimH(Kα) of the components Kαassume all values from some closed interval [a, b].
AB - The paper shows an essential difference between fractal squares and fractal cubes. The topological classification of fractal squares proposed in 2013 by K.-S. Lau et al. was based on analyzing the properties of the Z2-periodic extension H = F + Z2of a fractal square F and of its complement Hc= R2\ H. A fractal square F ⊂ R2contains a connected component different from a line segment or a point if and only if the set Hccontains a bounded connected component. We show the existence of a fractal cube F in R3for which the set Hc= R3\H is connected whereas the set Q of connected components Kαof F possesses the following properties: Q is a totally disconnected self-similar subset of the hyperspace C(R3), it is bi-Lipschitz isomorphic to the Cantor set C1/5, all the sets Kα+Z3are connected and pairwise disjoint, and the Hausdorff dimensions dimH(Kα) of the components Kαassume all values from some closed interval [a, b].
KW - Fractal cube
KW - Fractal square
KW - Hausdorff dimension
KW - Hyperspace
KW - Self-similar set
KW - Superfractal
KW - hyperspace
KW - self-similar set
KW - fractal cube
KW - fractal square
KW - CURVES
KW - superfractal
KW - INFINITE LENGTH
UR - http://www.scopus.com/inward/record.url?scp=85090531595&partnerID=8YFLogxK
UR - https://elibrary.ru/item.asp?id=42950651
U2 - 10.21538/0134-4889-2020-26-2-98-107
DO - 10.21538/0134-4889-2020-26-2-98-107
M3 - Article
AN - SCOPUS:85090531595
VL - 26
SP - 98
EP - 107
JO - Trudy Instituta Matematiki i Mekhaniki UrO RAN
JF - Trudy Instituta Matematiki i Mekhaniki UrO RAN
SN - 0134-4889
IS - 2
ER -
ID: 25310286