Standard

On Changing Variables in L p-Spaces with Distributed-Microstructure. / Evseev, N. A.; Menovschikov, A. V.

в: Russian Mathematics, Том 64, № 3, 01.03.2020, стр. 82-86.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Evseev, NA & Menovschikov, AV 2020, 'On Changing Variables in L p-Spaces with Distributed-Microstructure', Russian Mathematics, Том. 64, № 3, стр. 82-86. https://doi.org/10.3103/S1066369X20030093

APA

Vancouver

Evseev NA, Menovschikov AV. On Changing Variables in L p-Spaces with Distributed-Microstructure. Russian Mathematics. 2020 март 1;64(3):82-86. doi: 10.3103/S1066369X20030093

Author

Evseev, N. A. ; Menovschikov, A. V. / On Changing Variables in L p-Spaces with Distributed-Microstructure. в: Russian Mathematics. 2020 ; Том 64, № 3. стр. 82-86.

BibTeX

@article{41bfddb57e1e448a812cb1dc15d5f3db,
title = "On Changing Variables in L p-Spaces with Distributed-Microstructure",
abstract = "We study the boundedness of the composition operator in the spaces Lp(V, W1, r(Yv)). Such spaces arise when modeling the transport processes in a porous medium. It is assumed that the operator is induced by a mapping preserving the priority of the variables, which agrees with the physical requirements for the model.",
keywords = "composition operator, direct integral of Banach spaces, Sobolev space, MODELS",
author = "Evseev, {N. A.} and Menovschikov, {A. V.}",
year = "2020",
month = mar,
day = "1",
doi = "10.3103/S1066369X20030093",
language = "English",
volume = "64",
pages = "82--86",
journal = "Russian Mathematics",
issn = "1066-369X",
publisher = "Allerton Press Inc.",
number = "3",

}

RIS

TY - JOUR

T1 - On Changing Variables in L p-Spaces with Distributed-Microstructure

AU - Evseev, N. A.

AU - Menovschikov, A. V.

PY - 2020/3/1

Y1 - 2020/3/1

N2 - We study the boundedness of the composition operator in the spaces Lp(V, W1, r(Yv)). Such spaces arise when modeling the transport processes in a porous medium. It is assumed that the operator is induced by a mapping preserving the priority of the variables, which agrees with the physical requirements for the model.

AB - We study the boundedness of the composition operator in the spaces Lp(V, W1, r(Yv)). Such spaces arise when modeling the transport processes in a porous medium. It is assumed that the operator is induced by a mapping preserving the priority of the variables, which agrees with the physical requirements for the model.

KW - composition operator

KW - direct integral of Banach spaces

KW - Sobolev space

KW - MODELS

UR - http://www.scopus.com/inward/record.url?scp=85083796467&partnerID=8YFLogxK

U2 - 10.3103/S1066369X20030093

DO - 10.3103/S1066369X20030093

M3 - Article

AN - SCOPUS:85083796467

VL - 64

SP - 82

EP - 86

JO - Russian Mathematics

JF - Russian Mathematics

SN - 1066-369X

IS - 3

ER -

ID: 24160422