Standard

Observation of ηc(2S)→K+K−η. / The BESIII Collaboration ; Николаев, Иван Борисович; Мучной, Николай Юрьевич.

в: Physical Review D, Том 110, № 9, 92003, 12.11.2024.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

The BESIII Collaboration, Николаев, ИБ & Мучной, НЮ 2024, 'Observation of ηc(2S)→K+K−η', Physical Review D, Том. 110, № 9, 92003. https://doi.org/10.1103/PhysRevD.110.092003

APA

Vancouver

The BESIII Collaboration, Николаев ИБ, Мучной НЮ. Observation of ηc(2S)→K+K−η. Physical Review D. 2024 нояб. 12;110(9):92003. doi: 10.1103/PhysRevD.110.092003

Author

BibTeX

@article{6442d2fe39b9452e92a008ba9814db59,
title = "Observation of ηc(2S)→K+K−η",
abstract = "By analyzing (27.12±0.14)×108 ψ(3686) events accumulated with the BESIII detector, the decay ηc(2S)→K+K−η is observed for the first time with a significance of 6.2σ after considering systematic uncertainties. The product of the branching fractions of ψ(3686)→γηc(2S) and ηc(2S)→K+K−η is measured to be B(ψ(3686)→γηc(2S))×B(ηc(2S)→K+K−η)=(2.39±0.32±0.34)×10−6, where the first uncertainty is statistical, and the second one is systematic. The branching fraction of ηc(2S)→K+K−η is determined to be B(ηc(2S)→K+K−η)=(3.42±0.46±0.48±2.44)×10−3, where the third uncertainty is due to the branching fraction ofψ(3686)→γηc(2S). Using a recent BESIII measurement of B(ηc(2S)→K+K−π0), we also determine the ratio between the branching fractions of ηc(2S)→K+K−η and ηc(2S)→K+K−π0 to be1.49±0.22±0.25, which is consistent with the previous result of BABAR at a comparable precision level.",
author = "{BESIII Collaboration} and M. Ablikim and M. n. Achasov and P. Adlarson and O. Afedulidis and X. c. Ai and R. Aliberti and A. Amoroso and Q. An and Y. Bai and O. Bakina and I. Balossino and Y. Ban and H.-R. Bao and V. Batozskaya and K. Begzsuren and N. Berger and M. Berlowski and M. Bertani and D. Bettoni and F. Bianchi and E. Bianco and A. Bortone and R. a. Briere and A. Brueggemann and Николаев, {Иван Борисович} and Мучной, {Николай Юрьевич}",
year = "2024",
month = nov,
day = "12",
doi = "10.1103/PhysRevD.110.092003",
language = "English",
volume = "110",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "American Physical Society",
number = "9",

}

RIS

TY - JOUR

T1 - Observation of ηc(2S)→K+K−η

AU - BESIII Collaboration

AU - Ablikim, M.

AU - Achasov, M. n.

AU - Adlarson, P.

AU - Afedulidis, O.

AU - Ai, X. c.

AU - Aliberti, R.

AU - Amoroso, A.

AU - An, Q.

AU - Bai, Y.

AU - Bakina, O.

AU - Balossino, I.

AU - Ban, Y.

AU - Bao, H.-R.

AU - Batozskaya, V.

AU - Begzsuren, K.

AU - Berger, N.

AU - Berlowski, M.

AU - Bertani, M.

AU - Bettoni, D.

AU - Bianchi, F.

AU - Bianco, E.

AU - Bortone, A.

AU - Briere, R. a.

AU - Brueggemann, A.

AU - Николаев, Иван Борисович

AU - Мучной, Николай Юрьевич

PY - 2024/11/12

Y1 - 2024/11/12

N2 - By analyzing (27.12±0.14)×108 ψ(3686) events accumulated with the BESIII detector, the decay ηc(2S)→K+K−η is observed for the first time with a significance of 6.2σ after considering systematic uncertainties. The product of the branching fractions of ψ(3686)→γηc(2S) and ηc(2S)→K+K−η is measured to be B(ψ(3686)→γηc(2S))×B(ηc(2S)→K+K−η)=(2.39±0.32±0.34)×10−6, where the first uncertainty is statistical, and the second one is systematic. The branching fraction of ηc(2S)→K+K−η is determined to be B(ηc(2S)→K+K−η)=(3.42±0.46±0.48±2.44)×10−3, where the third uncertainty is due to the branching fraction ofψ(3686)→γηc(2S). Using a recent BESIII measurement of B(ηc(2S)→K+K−π0), we also determine the ratio between the branching fractions of ηc(2S)→K+K−η and ηc(2S)→K+K−π0 to be1.49±0.22±0.25, which is consistent with the previous result of BABAR at a comparable precision level.

AB - By analyzing (27.12±0.14)×108 ψ(3686) events accumulated with the BESIII detector, the decay ηc(2S)→K+K−η is observed for the first time with a significance of 6.2σ after considering systematic uncertainties. The product of the branching fractions of ψ(3686)→γηc(2S) and ηc(2S)→K+K−η is measured to be B(ψ(3686)→γηc(2S))×B(ηc(2S)→K+K−η)=(2.39±0.32±0.34)×10−6, where the first uncertainty is statistical, and the second one is systematic. The branching fraction of ηc(2S)→K+K−η is determined to be B(ηc(2S)→K+K−η)=(3.42±0.46±0.48±2.44)×10−3, where the third uncertainty is due to the branching fraction ofψ(3686)→γηc(2S). Using a recent BESIII measurement of B(ηc(2S)→K+K−π0), we also determine the ratio between the branching fractions of ηc(2S)→K+K−η and ηc(2S)→K+K−π0 to be1.49±0.22±0.25, which is consistent with the previous result of BABAR at a comparable precision level.

U2 - 10.1103/PhysRevD.110.092003

DO - 10.1103/PhysRevD.110.092003

M3 - Article

VL - 110

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

IS - 9

M1 - 92003

ER -

ID: 67753441