Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Numerical-Statistical Investigation of Superexponential Growth of Mean Particle Flow with Multiplication in a Homogeneous Random Medium. / Михайлов, Геннадий Алексеевич; Лотова, Галия Зуфаровна.
в: Doklady Mathematics, Том 108, № 3, 12.2023, стр. 519-523.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Numerical-Statistical Investigation of Superexponential Growth of Mean Particle Flow with Multiplication in a Homogeneous Random Medium
AU - Михайлов, Геннадий Алексеевич
AU - Лотова, Галия Зуфаровна
N1 - This work was performed at the Institute of Computational Mathematics and Mathematical Geophysics of the Siberian Branch of the Russian Academy of Sciences within the state assignment, project no. 0251-2022-0002. Публикация для корректировки.
PY - 2023/12
Y1 - 2023/12
N2 - A new correlative-grid approximation of a homogeneous random field is introduced for an effective numerical-analytical investigation of the superexponential growth of the mean particle flow with multiplication in a random medium. The complexity of particle trajectory realization is independent of the correlation scale. Test computations for a critical ball with isotropic scattering showed high accuracy of the corresponding mean flow estimates. For the correlative-grid approximation of a random density field, the possibility of Gaussian asymptotics of the mean particle multiplication rate as the correlation scale decreases is justified.
AB - A new correlative-grid approximation of a homogeneous random field is introduced for an effective numerical-analytical investigation of the superexponential growth of the mean particle flow with multiplication in a random medium. The complexity of particle trajectory realization is independent of the correlation scale. Test computations for a critical ball with isotropic scattering showed high accuracy of the corresponding mean flow estimates. For the correlative-grid approximation of a random density field, the possibility of Gaussian asymptotics of the mean particle multiplication rate as the correlation scale decreases is justified.
KW - Voronoi mosaic
KW - grid approximation
KW - numerical statistical simulation
KW - particles flow
KW - random medium
KW - superexponential asymptotics
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85187912406&origin=inward&txGid=af3f9a86077519ae0277c9c88492d33b
UR - https://www.mendeley.com/catalogue/4182f606-72ae-39f4-8e98-4943957640d6/
U2 - 10.1134/S106456242370148X
DO - 10.1134/S106456242370148X
M3 - Article
VL - 108
SP - 519
EP - 523
JO - Doklady Mathematics
JF - Doklady Mathematics
SN - 1064-5624
IS - 3
ER -
ID: 59800696