Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
NP-hardness of quadratic euclidean 1-mean and 1-median 2-clustering problem with constraints on the cluster sizes. / Kel’manov, A. V.; Pyatkin, A. V.; Khandeev, V. I.
в: Doklady Mathematics, Том 100, № 3, 11.2019, стр. 545-548.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - NP-hardness of quadratic euclidean 1-mean and 1-median 2-clustering problem with constraints on the cluster sizes
AU - Kel’manov, A. V.
AU - Pyatkin, A. V.
AU - Khandeev, V. I.
PY - 2019/11
Y1 - 2019/11
N2 - We consider the problem of clustering a finite set of N points in d-dimensional Euclidean space into two clusters minimizing the sum (over both clusters) of the intracluster sums of the squared distances between the cluster elements and their centers. The center of one cluster is defined as a centroid (geometric center). The center of the other cluster is determined as an optimized point in the input set. We analyze the variant of the problem with given cluster sizes such that their sum is equal to the size of the input set. The strong NP-hardness of this problem is proved.
AB - We consider the problem of clustering a finite set of N points in d-dimensional Euclidean space into two clusters minimizing the sum (over both clusters) of the intracluster sums of the squared distances between the cluster elements and their centers. The center of one cluster is defined as a centroid (geometric center). The center of the other cluster is determined as an optimized point in the input set. We analyze the variant of the problem with given cluster sizes such that their sum is equal to the size of the input set. The strong NP-hardness of this problem is proved.
UR - http://www.scopus.com/inward/record.url?scp=85081681028&partnerID=8YFLogxK
U2 - 10.1134/S1064562419060127
DO - 10.1134/S1064562419060127
M3 - Article
AN - SCOPUS:85081681028
VL - 100
SP - 545
EP - 548
JO - Doklady Mathematics
JF - Doklady Mathematics
SN - 1064-5624
IS - 3
ER -
ID: 23825697