Standard

Normality tests for very small sample sizes. / Kovalevskii, Artyom Pavlovich.

в: Сибирские электронные математические известия, Том 14, 01.01.2017, стр. 1207-1214.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Kovalevskii, AP 2017, 'Normality tests for very small sample sizes', Сибирские электронные математические известия, Том. 14, стр. 1207-1214. https://doi.org/10.17377/semi.2017.14.102

APA

Kovalevskii, A. P. (2017). Normality tests for very small sample sizes. Сибирские электронные математические известия, 14, 1207-1214. https://doi.org/10.17377/semi.2017.14.102

Vancouver

Kovalevskii AP. Normality tests for very small sample sizes. Сибирские электронные математические известия. 2017 янв. 1;14:1207-1214. doi: 10.17377/semi.2017.14.102

Author

Kovalevskii, Artyom Pavlovich. / Normality tests for very small sample sizes. в: Сибирские электронные математические известия. 2017 ; Том 14. стр. 1207-1214.

BibTeX

@article{4eb6eb791c124705a34b5744a19a88e1,
title = "Normality tests for very small sample sizes",
abstract = "We consider testing the hypothesis of normality for 2, 3, 4 samples in absence of a priori information about its distribution parameters and alternative hypotheses. We base a precise test on a ratio of a range to a minimal spacing. We compare the test with Shapiro & Wilk test.",
keywords = "L'Huillier formula, Normality test, Shapiro & Wilk test, Small sample size, Spherical tetrahedron",
author = "Kovalevskii, {Artyom Pavlovich}",
year = "2017",
month = jan,
day = "1",
doi = "10.17377/semi.2017.14.102",
language = "English",
volume = "14",
pages = "1207--1214",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Normality tests for very small sample sizes

AU - Kovalevskii, Artyom Pavlovich

PY - 2017/1/1

Y1 - 2017/1/1

N2 - We consider testing the hypothesis of normality for 2, 3, 4 samples in absence of a priori information about its distribution parameters and alternative hypotheses. We base a precise test on a ratio of a range to a minimal spacing. We compare the test with Shapiro & Wilk test.

AB - We consider testing the hypothesis of normality for 2, 3, 4 samples in absence of a priori information about its distribution parameters and alternative hypotheses. We base a precise test on a ratio of a range to a minimal spacing. We compare the test with Shapiro & Wilk test.

KW - L'Huillier formula

KW - Normality test

KW - Shapiro & Wilk test

KW - Small sample size

KW - Spherical tetrahedron

UR - http://www.scopus.com/inward/record.url?scp=85074602780&partnerID=8YFLogxK

U2 - 10.17377/semi.2017.14.102

DO - 10.17377/semi.2017.14.102

M3 - Article

AN - SCOPUS:85074602780

VL - 14

SP - 1207

EP - 1214

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 23258755