Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Nonlocal evolution equations with p[u(x, t)]-Laplacian and lower-order terms. / Antontsev, Stanislav; Shmarev, Sergey.
в: Journal of Elliptic and Parabolic Equations, Том 6, № 1, 01.06.2020, стр. 211-237.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Nonlocal evolution equations with p[u(x, t)]-Laplacian and lower-order terms
AU - Antontsev, Stanislav
AU - Shmarev, Sergey
PY - 2020/6/1
Y1 - 2020/6/1
N2 - We study the homogeneous Dirichlet problem for a class of nonlocal singular parabolic equations ut-div(|∇u|p[u]-2∇u)=f((x,t),u,l(u))inQT=Ω×(0,T),where Ω⊂ Rd, d≥ 2 , is a smooth domain, p[u] = p(l(u)) is a given function with values in the interval [p-,p+]⊂(2dd+2,2), and l(u)=∫Ω|u(x,t)|αdx, α∈ [1 , 2] , is a functional of the unknown solution. We prove the existence of a strong solution such that ut∈L2(QT),u∈L∞(0,T;W01,2(Ω)),|Dij2u|p[u]∈L1(QT).Conditions of uniqueness of strong solutions are obtained.
AB - We study the homogeneous Dirichlet problem for a class of nonlocal singular parabolic equations ut-div(|∇u|p[u]-2∇u)=f((x,t),u,l(u))inQT=Ω×(0,T),where Ω⊂ Rd, d≥ 2 , is a smooth domain, p[u] = p(l(u)) is a given function with values in the interval [p-,p+]⊂(2dd+2,2), and l(u)=∫Ω|u(x,t)|αdx, α∈ [1 , 2] , is a functional of the unknown solution. We prove the existence of a strong solution such that ut∈L2(QT),u∈L∞(0,T;W01,2(Ω)),|Dij2u|p[u]∈L1(QT).Conditions of uniqueness of strong solutions are obtained.
KW - Nonlocal equation
KW - Singular parabolic equation
KW - Strong solutions
KW - Variable nonlinearity
KW - P(U)-LAPLACIAN
KW - VARIABLE EXPONENT
KW - UNIQUENESS
UR - http://www.scopus.com/inward/record.url?scp=85084121184&partnerID=8YFLogxK
U2 - 10.1007/s41808-020-00065-x
DO - 10.1007/s41808-020-00065-x
M3 - Article
AN - SCOPUS:85084121184
VL - 6
SP - 211
EP - 237
JO - Journal of Elliptic and Parabolic Equations
JF - Journal of Elliptic and Parabolic Equations
SN - 2296-9020
IS - 1
ER -
ID: 24232044