Standard

Nonabelian Composition Factors of a Finite Group Whose Maximal Subgroups of Odd Indices Are Hall Subgroups. / Maslova, N. V.; Revin, D. O.

в: Proceedings of the Steklov Institute of Mathematics, Том 299, 01.12.2017, стр. 148-157.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Maslova NV, Revin DO. Nonabelian Composition Factors of a Finite Group Whose Maximal Subgroups of Odd Indices Are Hall Subgroups. Proceedings of the Steklov Institute of Mathematics. 2017 дек. 1;299:148-157. doi: 10.1134/S0081543817090176

Author

Maslova, N. V. ; Revin, D. O. / Nonabelian Composition Factors of a Finite Group Whose Maximal Subgroups of Odd Indices Are Hall Subgroups. в: Proceedings of the Steklov Institute of Mathematics. 2017 ; Том 299. стр. 148-157.

BibTeX

@article{a9eb6c16dc8f45fc833b000f16b6ad4c,
title = "Nonabelian Composition Factors of a Finite Group Whose Maximal Subgroups of Odd Indices Are Hall Subgroups",
abstract = "We obtain a description of nonabelian composition factors of a finite nonsolvable group in which any maximal subgroup of odd index is a Hall subgroup.",
keywords = "composition factor, finite group, Hall subgroup, maximal subgroup, odd index",
author = "Maslova, {N. V.} and Revin, {D. O.}",
year = "2017",
month = dec,
day = "1",
doi = "10.1134/S0081543817090176",
language = "English",
volume = "299",
pages = "148--157",
journal = "Proceedings of the Steklov Institute of Mathematics",
issn = "0081-5438",
publisher = "Maik Nauka Publishing / Springer SBM",

}

RIS

TY - JOUR

T1 - Nonabelian Composition Factors of a Finite Group Whose Maximal Subgroups of Odd Indices Are Hall Subgroups

AU - Maslova, N. V.

AU - Revin, D. O.

PY - 2017/12/1

Y1 - 2017/12/1

N2 - We obtain a description of nonabelian composition factors of a finite nonsolvable group in which any maximal subgroup of odd index is a Hall subgroup.

AB - We obtain a description of nonabelian composition factors of a finite nonsolvable group in which any maximal subgroup of odd index is a Hall subgroup.

KW - composition factor

KW - finite group

KW - Hall subgroup

KW - maximal subgroup

KW - odd index

UR - http://www.scopus.com/inward/record.url?scp=85042157867&partnerID=8YFLogxK

U2 - 10.1134/S0081543817090176

DO - 10.1134/S0081543817090176

M3 - Article

AN - SCOPUS:85042157867

VL - 299

SP - 148

EP - 157

JO - Proceedings of the Steklov Institute of Mathematics

JF - Proceedings of the Steklov Institute of Mathematics

SN - 0081-5438

ER -

ID: 9952655