Standard

New efficient preconditioner for Helmholtz equation. / Klyuchinskiy, Dmitriy; Kostin, Victor; Landa, Evgeny.

Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy: A Liber Amicorum to Professor Godunov. Springer International Publishing AG, 2020. стр. 243-251.

Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийглава/разделнаучнаяРецензирование

Harvard

Klyuchinskiy, D, Kostin, V & Landa, E 2020, New efficient preconditioner for Helmholtz equation. в Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy: A Liber Amicorum to Professor Godunov. Springer International Publishing AG, стр. 243-251. https://doi.org/10.1007/978-3-030-38870-6_32

APA

Klyuchinskiy, D., Kostin, V., & Landa, E. (2020). New efficient preconditioner for Helmholtz equation. в Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy: A Liber Amicorum to Professor Godunov (стр. 243-251). Springer International Publishing AG. https://doi.org/10.1007/978-3-030-38870-6_32

Vancouver

Klyuchinskiy D, Kostin V, Landa E. New efficient preconditioner for Helmholtz equation. в Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy: A Liber Amicorum to Professor Godunov. Springer International Publishing AG. 2020. стр. 243-251 doi: 10.1007/978-3-030-38870-6_32

Author

Klyuchinskiy, Dmitriy ; Kostin, Victor ; Landa, Evgeny. / New efficient preconditioner for Helmholtz equation. Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy: A Liber Amicorum to Professor Godunov. Springer International Publishing AG, 2020. стр. 243-251

BibTeX

@inbook{d2b95b762d164bc896be7c5bdc3fd6e1,
title = "New efficient preconditioner for Helmholtz equation",
abstract = "The capabilities of modern computers and mathematical software are entirely sufficient for the numerical solution of 2DPDEs. Two-dimensional problems naturally arise when the Fourier method is applied to a three-dimensional boundary value problem for PDEswith coefficients independent of one variable. Such specially constructed solvers can be used as preconditioners for iterative solvers of boundary value problems for PDEs with general case coefficients. In this paper, we develop the outlined above idea for the numerical solution of the Helmholtz equation.",
author = "Dmitriy Klyuchinskiy and Victor Kostin and Evgeny Landa",
note = "Publisher Copyright: {\textcopyright} Springer Nature Switzerland AG 2020.",
year = "2020",
month = apr,
day = "3",
doi = "10.1007/978-3-030-38870-6_32",
language = "English",
isbn = "9783030388690",
pages = "243--251",
booktitle = "Continuum Mechanics, Applied Mathematics and Scientific Computing",
publisher = "Springer International Publishing AG",
address = "Switzerland",

}

RIS

TY - CHAP

T1 - New efficient preconditioner for Helmholtz equation

AU - Klyuchinskiy, Dmitriy

AU - Kostin, Victor

AU - Landa, Evgeny

N1 - Publisher Copyright: © Springer Nature Switzerland AG 2020.

PY - 2020/4/3

Y1 - 2020/4/3

N2 - The capabilities of modern computers and mathematical software are entirely sufficient for the numerical solution of 2DPDEs. Two-dimensional problems naturally arise when the Fourier method is applied to a three-dimensional boundary value problem for PDEswith coefficients independent of one variable. Such specially constructed solvers can be used as preconditioners for iterative solvers of boundary value problems for PDEs with general case coefficients. In this paper, we develop the outlined above idea for the numerical solution of the Helmholtz equation.

AB - The capabilities of modern computers and mathematical software are entirely sufficient for the numerical solution of 2DPDEs. Two-dimensional problems naturally arise when the Fourier method is applied to a three-dimensional boundary value problem for PDEswith coefficients independent of one variable. Such specially constructed solvers can be used as preconditioners for iterative solvers of boundary value problems for PDEs with general case coefficients. In this paper, we develop the outlined above idea for the numerical solution of the Helmholtz equation.

UR - http://www.scopus.com/inward/record.url?scp=85114658450&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-38870-6_32

DO - 10.1007/978-3-030-38870-6_32

M3 - Chapter

AN - SCOPUS:85114658450

SN - 9783030388690

SP - 243

EP - 251

BT - Continuum Mechanics, Applied Mathematics and Scientific Computing

PB - Springer International Publishing AG

ER -

ID: 34226836