Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
New central elements in free alternative algebras. / Shestakov, Ivan; Sverchkov, Sergei.
в: Israel Journal of Mathematics, 21.08.2024, стр. 1-26.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - New central elements in free alternative algebras
AU - Shestakov, Ivan
AU - Sverchkov, Sergei
N1 - The first author was supported by the Mathematical Center in Akademgorodok, agreement with the Ministry of Science and Higher Education of the Russian Federation No. 075-15-2022-281. He was also partially supported by FAPESP, Proc. 2018/23690-6 and CNPq, Proc. 304313/2019-0 of Brazil. The second author was partially supported by FAPESP, Proc. 2018/03717-7 of Brazil.
PY - 2024/8/21
Y1 - 2024/8/21
N2 - A new series of central elements is found in the free alternative algebra. More exactly, let Alt[X] and SMalc[X] ⊂ Alt[X] be the free alternative algebra and the free special Malcev algebra over a field of characteristic 0 on a set of free generators X, and let f (x, y, x1,…, xn) ∈ SMalc[X] be a multilinear element which is trivial in the free associative algebra. Then the element un = un (x, x1,…,xn) = f (x2, x, x1,…,xn) − f (x, x2,x1,…,xn) lies in the center of the algebra Alt[X]. The elements un(x, x1,…, xn) are uniquely defined up to a scalar for a given n (that is, they do not depend on f but only on deg f), and they are skew-symmetric on the variables x1,…,xn. Moreover, un = 0 for n = 4m + 2, 4m + 3 and un ≠ 0 for n = 4m, 4m + 1. The ideals generated by the elements u4m, u4m+1 lie in the associative center of the algebra Alt[X] and have trivial multiplication.
AB - A new series of central elements is found in the free alternative algebra. More exactly, let Alt[X] and SMalc[X] ⊂ Alt[X] be the free alternative algebra and the free special Malcev algebra over a field of characteristic 0 on a set of free generators X, and let f (x, y, x1,…, xn) ∈ SMalc[X] be a multilinear element which is trivial in the free associative algebra. Then the element un = un (x, x1,…,xn) = f (x2, x, x1,…,xn) − f (x, x2,x1,…,xn) lies in the center of the algebra Alt[X]. The elements un(x, x1,…, xn) are uniquely defined up to a scalar for a given n (that is, they do not depend on f but only on deg f), and they are skew-symmetric on the variables x1,…,xn. Moreover, un = 0 for n = 4m + 2, 4m + 3 and un ≠ 0 for n = 4m, 4m + 1. The ideals generated by the elements u4m, u4m+1 lie in the associative center of the algebra Alt[X] and have trivial multiplication.
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85200965418&origin=inward&txGid=480d91cc34c17dca74d980f24e2a1c1e
UR - https://www.webofscience.com/wos/woscc/full-record/WOS:001291207800002
UR - https://www.mendeley.com/catalogue/d149de34-2517-3f32-adf1-0b178f04760c/
U2 - 10.1007/s11856-024-2650-9
DO - 10.1007/s11856-024-2650-9
M3 - Article
SP - 1
EP - 26
JO - Israel Journal of Mathematics
JF - Israel Journal of Mathematics
SN - 0021-2172
ER -
ID: 61203931