Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
New Approaches to Coding Information using Inverse Scattering Transform. / Frumin, L. L.; Gelash, A. A.; Turitsyn, S. K.
в: Physical Review Letters, Том 118, № 22, 223901, 31.05.2017, стр. 223901.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - New Approaches to Coding Information using Inverse Scattering Transform
AU - Frumin, L. L.
AU - Gelash, A. A.
AU - Turitsyn, S. K.
PY - 2017/5/31
Y1 - 2017/5/31
N2 - Remarkable mathematical properties of the integrable nonlinear Schrödinger equation (NLSE) can offer advanced solutions for the mitigation of nonlinear signal distortions in optical fiber links. Fundamental optical soliton, continuous, and discrete eigenvalues of the nonlinear spectrum have already been considered for the transmission of information in fiber-optic channels. Here, we propose to apply signal modulation to the kernel of the Gelfand-Levitan-Marchenko equations that offers the advantage of a relatively simple decoder design. First, we describe an approach based on exploiting the general N-soliton solution of the NLSE for simultaneous coding of N symbols involving 4×N coding parameters. As a specific elegant subclass of the general schemes, we introduce a soliton orthogonal frequency division multiplexing (SOFDM) method. This method is based on the choice of identical imaginary parts of the N-soliton solution eigenvalues, corresponding to equidistant soliton frequencies, making it similar to the conventional OFDM scheme, thus, allowing for the use of the efficient fast Fourier transform algorithm to recover the data. Then, we demonstrate how to use this new approach to control signal parameters in the case of the continuous spectrum.
AB - Remarkable mathematical properties of the integrable nonlinear Schrödinger equation (NLSE) can offer advanced solutions for the mitigation of nonlinear signal distortions in optical fiber links. Fundamental optical soliton, continuous, and discrete eigenvalues of the nonlinear spectrum have already been considered for the transmission of information in fiber-optic channels. Here, we propose to apply signal modulation to the kernel of the Gelfand-Levitan-Marchenko equations that offers the advantage of a relatively simple decoder design. First, we describe an approach based on exploiting the general N-soliton solution of the NLSE for simultaneous coding of N symbols involving 4×N coding parameters. As a specific elegant subclass of the general schemes, we introduce a soliton orthogonal frequency division multiplexing (SOFDM) method. This method is based on the choice of identical imaginary parts of the N-soliton solution eigenvalues, corresponding to equidistant soliton frequencies, making it similar to the conventional OFDM scheme, thus, allowing for the use of the efficient fast Fourier transform algorithm to recover the data. Then, we demonstrate how to use this new approach to control signal parameters in the case of the continuous spectrum.
KW - NONLINEAR FOURIER-TRANSFORM
KW - EFFICIENT NUMERICAL-METHOD
KW - MATRICES
KW - WAVES
UR - http://www.scopus.com/inward/record.url?scp=85020170968&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.118.223901
DO - 10.1103/PhysRevLett.118.223901
M3 - Article
C2 - 28621991
AN - SCOPUS:85020170968
VL - 118
SP - 223901
JO - Physical Review Letters
JF - Physical Review Letters
SN - 0031-9007
IS - 22
M1 - 223901
ER -
ID: 9079389