Standard

Nanowired structure, optical properties and conduction band offset of RF magnetron-deposited n-Si/In2O3:Er films. / Feklistov, K. V.; Lemzyakov, A. G.; Prosvirin, I. P. и др.

в: Materials Research Express, Том 7, № 12, 125903, 12.2020.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Feklistov, KV, Lemzyakov, AG, Prosvirin, IP, Gismatulin, AA, Shklyaev, AA, Zhivodkov, YA, Krivyakin, G, Komonov, AI, Kozhukhov, AS, Spesivsev, EV, Gulyaev, DV, Abramkin, DS, Pugachev, AM, Esaev, DG & Sidorov, GY 2020, 'Nanowired structure, optical properties and conduction band offset of RF magnetron-deposited n-Si/In2O3:Er films', Materials Research Express, Том. 7, № 12, 125903. https://doi.org/10.1088/2053-1591/abd06b

APA

Feklistov, K. V., Lemzyakov, A. G., Prosvirin, I. P., Gismatulin, A. A., Shklyaev, A. A., Zhivodkov, Y. A., Krivyakin, G., Komonov, A. I., Kozhukhov, A. S., Spesivsev, E. V., Gulyaev, D. V., Abramkin, D. S., Pugachev, A. M., Esaev, D. G., & Sidorov, G. Y. (2020). Nanowired structure, optical properties and conduction band offset of RF magnetron-deposited n-Si/In2O3:Er films. Materials Research Express, 7(12), [125903]. https://doi.org/10.1088/2053-1591/abd06b

Vancouver

Feklistov KV, Lemzyakov AG, Prosvirin IP, Gismatulin AA, Shklyaev AA, Zhivodkov YA и др. Nanowired structure, optical properties and conduction band offset of RF magnetron-deposited n-Si/In2O3:Er films. Materials Research Express. 2020 дек.;7(12):125903. doi: 10.1088/2053-1591/abd06b

Author

Feklistov, K. V. ; Lemzyakov, A. G. ; Prosvirin, I. P. и др. / Nanowired structure, optical properties and conduction band offset of RF magnetron-deposited n-Si/In2O3:Er films. в: Materials Research Express. 2020 ; Том 7, № 12.

BibTeX

@article{47b87e81fe8c465188e9189bc56623a5,
title = "Nanowired structure, optical properties and conduction band offset of RF magnetron-deposited n-Si/In2O3:Er films",
abstract = "RF magnetron-deposited Si\In2O3:Er films have the structure of the single-crystalline bixbyite bcc In2O3 nanowires bunched into the columns extended across the films. The obtained films have a typical In2O3 optical band gap of 3.55 eV and demonstrate the 1.54 μm Er3+ room temperature photoluminescence. The current across the film flows inside the columns through the nanowires. The current through the MOS-structure with the intermediate low barrier In2O3:Er dielectric was investigated by the thermionic emission approach, with respect to the partial voltage drop in silicon. Schottky plots ln(I/T 2) versus 1/kT of forward currents at small biases and backward currents in saturation give the electron forward n-Si\In2O3:Er barrier equal to 0.14 eV and the backward In\In2O3:Er barrier equal to 0.21 eV.",
keywords = "Band offset, InO:Er, Nanowires, Photoluminescence, Silicon, Thermionic emission, Thin films, thermionic emission, band offset, photoluminescence, EXCITATION, PHOTOLUMINESCENCE, ER3+, In2O3, ELECTRICAL-PROPERTIES, SILICON, Er, ERBIUM, ELECTROLUMINESCENCE, thin films, nanowires, OXIDE THIN-FILMS, IN2O3, >",
author = "Feklistov, {K. V.} and Lemzyakov, {A. G.} and Prosvirin, {I. P.} and Gismatulin, {A. A.} and Shklyaev, {A. A.} and Zhivodkov, {Y. A.} and G. Krivyakin and Komonov, {A. I.} and Kozhukhov, {A. S.} and Spesivsev, {E. V.} and Gulyaev, {D. V.} and Abramkin, {D. S.} and Pugachev, {A. M.} and Esaev, {D. G.} and Sidorov, {G. Y.}",
note = "Funding Information: The work was supported by the Ministry of Science and Higher Education of the Russian Federation (project No. 0306-2019-0005) for electrical measurements and (grant No. 075-15-2020-797 (13.1902.21.0024)) for electron microscopy studies, and by the State Assignment No. AAAA-A17-117052410033-9 for optical measurements. Publisher Copyright: {\textcopyright} 2020 The Author(s). Published by IOP Publishing Ltd Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2020",
month = dec,
doi = "10.1088/2053-1591/abd06b",
language = "English",
volume = "7",
journal = "Materials Research Express",
issn = "2053-1591",
publisher = "IOP Publishing Ltd.",
number = "12",

}

RIS

TY - JOUR

T1 - Nanowired structure, optical properties and conduction band offset of RF magnetron-deposited n-Si/In2O3:Er films

AU - Feklistov, K. V.

AU - Lemzyakov, A. G.

AU - Prosvirin, I. P.

AU - Gismatulin, A. A.

AU - Shklyaev, A. A.

AU - Zhivodkov, Y. A.

AU - Krivyakin, G.

AU - Komonov, A. I.

AU - Kozhukhov, A. S.

AU - Spesivsev, E. V.

AU - Gulyaev, D. V.

AU - Abramkin, D. S.

AU - Pugachev, A. M.

AU - Esaev, D. G.

AU - Sidorov, G. Y.

N1 - Funding Information: The work was supported by the Ministry of Science and Higher Education of the Russian Federation (project No. 0306-2019-0005) for electrical measurements and (grant No. 075-15-2020-797 (13.1902.21.0024)) for electron microscopy studies, and by the State Assignment No. AAAA-A17-117052410033-9 for optical measurements. Publisher Copyright: © 2020 The Author(s). Published by IOP Publishing Ltd Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2020/12

Y1 - 2020/12

N2 - RF magnetron-deposited Si\In2O3:Er films have the structure of the single-crystalline bixbyite bcc In2O3 nanowires bunched into the columns extended across the films. The obtained films have a typical In2O3 optical band gap of 3.55 eV and demonstrate the 1.54 μm Er3+ room temperature photoluminescence. The current across the film flows inside the columns through the nanowires. The current through the MOS-structure with the intermediate low barrier In2O3:Er dielectric was investigated by the thermionic emission approach, with respect to the partial voltage drop in silicon. Schottky plots ln(I/T 2) versus 1/kT of forward currents at small biases and backward currents in saturation give the electron forward n-Si\In2O3:Er barrier equal to 0.14 eV and the backward In\In2O3:Er barrier equal to 0.21 eV.

AB - RF magnetron-deposited Si\In2O3:Er films have the structure of the single-crystalline bixbyite bcc In2O3 nanowires bunched into the columns extended across the films. The obtained films have a typical In2O3 optical band gap of 3.55 eV and demonstrate the 1.54 μm Er3+ room temperature photoluminescence. The current across the film flows inside the columns through the nanowires. The current through the MOS-structure with the intermediate low barrier In2O3:Er dielectric was investigated by the thermionic emission approach, with respect to the partial voltage drop in silicon. Schottky plots ln(I/T 2) versus 1/kT of forward currents at small biases and backward currents in saturation give the electron forward n-Si\In2O3:Er barrier equal to 0.14 eV and the backward In\In2O3:Er barrier equal to 0.21 eV.

KW - Band offset

KW - InO:Er

KW - Nanowires

KW - Photoluminescence

KW - Silicon

KW - Thermionic emission

KW - Thin films

KW - thermionic emission

KW - band offset

KW - photoluminescence

KW - EXCITATION

KW - PHOTOLUMINESCENCE

KW - ER3+

KW - In2O3

KW - ELECTRICAL-PROPERTIES

KW - SILICON

KW - Er

KW - ERBIUM

KW - ELECTROLUMINESCENCE

KW - thin films

KW - nanowires

KW - OXIDE THIN-FILMS

KW - IN2O3

KW - >

UR - http://www.scopus.com/inward/record.url?scp=85098750392&partnerID=8YFLogxK

U2 - 10.1088/2053-1591/abd06b

DO - 10.1088/2053-1591/abd06b

M3 - Article

AN - SCOPUS:85098750392

VL - 7

JO - Materials Research Express

JF - Materials Research Express

SN - 2053-1591

IS - 12

M1 - 125903

ER -

ID: 27373634