Standard

Mutual embeddings of right-angled Artin groups and generalized Baumslag-Solitar groups. / Dudkin, F. A.

в: Siberian Electronic Mathematical Reports, Том 19, № 2, 2022, стр. 809-814.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Dudkin FA. Mutual embeddings of right-angled Artin groups and generalized Baumslag-Solitar groups. Siberian Electronic Mathematical Reports. 2022;19(2):809-814. doi: 10.33048/semi.2022.19.068

Author

Dudkin, F. A. / Mutual embeddings of right-angled Artin groups and generalized Baumslag-Solitar groups. в: Siberian Electronic Mathematical Reports. 2022 ; Том 19, № 2. стр. 809-814.

BibTeX

@article{a9ce88735952450598dc86c3e3904a85,
title = "Mutual embeddings of right-angled Artin groups and generalized Baumslag-Solitar groups",
abstract = "Finitely generated group G acting on a tree so that all vertex and edge stabilizers are infinite cyclic groups is called a generalized Baumslag Solitar group (GBS group). In this paper, we study when a given GBS group can be embedded in a right-angled Artin group (RAAG) and vice versa. An exhaustive description has been obtained in both cases. If an embedding exists, then we discuss its construction.",
keywords = "Embedding problem., Generalized baumslag-solitar group, Right-angled artin group",
author = "Dudkin, {F. A.}",
note = "Chebunin, M. G. Modifications of Karlin and Simon text MODELS / M. G. Chebunin, A. P. Kovalevskii // Siberian Electronic Mathematical Reports. – 2022. – Vol. 19, No. 2. – P. 708-723. The reported study was funded by RFBR and CNRS according to the research project No. 19-51-15001.",
year = "2022",
doi = "10.33048/semi.2022.19.068",
language = "English",
volume = "19",
pages = "809--814",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",
number = "2",

}

RIS

TY - JOUR

T1 - Mutual embeddings of right-angled Artin groups and generalized Baumslag-Solitar groups

AU - Dudkin, F. A.

N1 - Chebunin, M. G. Modifications of Karlin and Simon text MODELS / M. G. Chebunin, A. P. Kovalevskii // Siberian Electronic Mathematical Reports. – 2022. – Vol. 19, No. 2. – P. 708-723. The reported study was funded by RFBR and CNRS according to the research project No. 19-51-15001.

PY - 2022

Y1 - 2022

N2 - Finitely generated group G acting on a tree so that all vertex and edge stabilizers are infinite cyclic groups is called a generalized Baumslag Solitar group (GBS group). In this paper, we study when a given GBS group can be embedded in a right-angled Artin group (RAAG) and vice versa. An exhaustive description has been obtained in both cases. If an embedding exists, then we discuss its construction.

AB - Finitely generated group G acting on a tree so that all vertex and edge stabilizers are infinite cyclic groups is called a generalized Baumslag Solitar group (GBS group). In this paper, we study when a given GBS group can be embedded in a right-angled Artin group (RAAG) and vice versa. An exhaustive description has been obtained in both cases. If an embedding exists, then we discuss its construction.

KW - Embedding problem.

KW - Generalized baumslag-solitar group

KW - Right-angled artin group

UR - https://www.scopus.com/inward/record.url?eid=2-s2.0-85145826509&partnerID=40&md5=ff64003008fc37df4e9c27f955047e54

UR - https://www.elibrary.ru/item.asp?id=50336845

UR - https://www.mendeley.com/catalogue/f44805a2-2037-38da-9735-3fdd3de9ae49/

U2 - 10.33048/semi.2022.19.068

DO - 10.33048/semi.2022.19.068

M3 - Article

VL - 19

SP - 809

EP - 814

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

IS - 2

ER -

ID: 45807712