Standard

Monomial Rota-Baxter operators on free commutative non-unital algebra. / Gubarev, Vsevolod.

в: Siberian Electronic Mathematical Reports, Том 17, 2020, стр. 1052-1063.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Gubarev, V 2020, 'Monomial Rota-Baxter operators on free commutative non-unital algebra', Siberian Electronic Mathematical Reports, Том. 17, стр. 1052-1063. https://doi.org/10.33048/semi.2020.17.079

APA

Vancouver

Gubarev V. Monomial Rota-Baxter operators on free commutative non-unital algebra. Siberian Electronic Mathematical Reports. 2020;17:1052-1063. doi: 10.33048/semi.2020.17.079

Author

Gubarev, Vsevolod. / Monomial Rota-Baxter operators on free commutative non-unital algebra. в: Siberian Electronic Mathematical Reports. 2020 ; Том 17. стр. 1052-1063.

BibTeX

@article{3c40042d2acf4acabba0a263c49b5d34,
title = "Monomial Rota-Baxter operators on free commutative non-unital algebra",
abstract = "A Rota—Baxter operator defined on the polynomial algebra is called monomial if it maps each monomial to a monomial with some coefficient. We classify monomial Rota—Baxter operators defined on the algebra of polynomials in one variable with no constant term. We also describe injective monomial Rota—Baxter operators of nonzero weight on the algebra of polynomials in several variables with no constant term.",
keywords = "polynomial algebra, Rota—Baxter operator",
author = "Vsevolod Gubarev",
note = "Publisher Copyright: {\textcopyright} 2020. Gubarev V. All rights reserved. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.",
year = "2020",
doi = "10.33048/semi.2020.17.079",
language = "English",
volume = "17",
pages = "1052--1063",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Monomial Rota-Baxter operators on free commutative non-unital algebra

AU - Gubarev, Vsevolod

N1 - Publisher Copyright: © 2020. Gubarev V. All rights reserved. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.

PY - 2020

Y1 - 2020

N2 - A Rota—Baxter operator defined on the polynomial algebra is called monomial if it maps each monomial to a monomial with some coefficient. We classify monomial Rota—Baxter operators defined on the algebra of polynomials in one variable with no constant term. We also describe injective monomial Rota—Baxter operators of nonzero weight on the algebra of polynomials in several variables with no constant term.

AB - A Rota—Baxter operator defined on the polynomial algebra is called monomial if it maps each monomial to a monomial with some coefficient. We classify monomial Rota—Baxter operators defined on the algebra of polynomials in one variable with no constant term. We also describe injective monomial Rota—Baxter operators of nonzero weight on the algebra of polynomials in several variables with no constant term.

KW - polynomial algebra

KW - Rota—Baxter operator

UR - http://www.scopus.com/inward/record.url?scp=85099188472&partnerID=8YFLogxK

U2 - 10.33048/semi.2020.17.079

DO - 10.33048/semi.2020.17.079

M3 - Article

AN - SCOPUS:85099188472

VL - 17

SP - 1052

EP - 1063

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 27450342