Standard

Momentum ray transforms, II : Range characterization in the Schwartz space. / Krishnan, Venkateswaran P.; Manna, Ramesh; Sahoo, Suman Kumar и др.

в: Inverse Problems, Том 36, № 4, 045009, 04.2020.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Krishnan, VP, Manna, R, Sahoo, SK & Sharafutdinov, VA 2020, 'Momentum ray transforms, II: Range characterization in the Schwartz space', Inverse Problems, Том. 36, № 4, 045009. https://doi.org/10.1088/1361-6420/ab6a65

APA

Krishnan, V. P., Manna, R., Sahoo, S. K., & Sharafutdinov, V. A. (2020). Momentum ray transforms, II: Range characterization in the Schwartz space. Inverse Problems, 36(4), [045009]. https://doi.org/10.1088/1361-6420/ab6a65

Vancouver

Krishnan VP, Manna R, Sahoo SK, Sharafutdinov VA. Momentum ray transforms, II: Range characterization in the Schwartz space. Inverse Problems. 2020 апр.;36(4):045009. doi: 10.1088/1361-6420/ab6a65

Author

Krishnan, Venkateswaran P. ; Manna, Ramesh ; Sahoo, Suman Kumar и др. / Momentum ray transforms, II : Range characterization in the Schwartz space. в: Inverse Problems. 2020 ; Том 36, № 4.

BibTeX

@article{3890183281864550b56a5aa2857c2c43,
title = "Momentum ray transforms, II: Range characterization in the Schwartz space",
abstract = "The momentum ray transform I k integrates a rank m symmetric tensor field f  over lines of with the weight t k: We give the range characterization for the operator on the Schwartz space of rank m smooth fast decaying tensor fields. In dimensions, the range is characterized by certain differential equations of order which generalize the classical John equations. In the two-dimensional case, the range is characterized by certain integral conditions which generalize the classical Gelfand-Helgason-Ludwig conditions.",
keywords = "inverse problems, John's conditions, momentum ray transform, range characterization, ray transform, tensor analysis",
author = "Krishnan, {Venkateswaran P.} and Ramesh Manna and Sahoo, {Suman Kumar} and Sharafutdinov, {Vladimir A.}",
year = "2020",
month = apr,
doi = "10.1088/1361-6420/ab6a65",
language = "English",
volume = "36",
journal = "Inverse Problems",
issn = "0266-5611",
publisher = "IOP Publishing Ltd.",
number = "4",

}

RIS

TY - JOUR

T1 - Momentum ray transforms, II

T2 - Range characterization in the Schwartz space

AU - Krishnan, Venkateswaran P.

AU - Manna, Ramesh

AU - Sahoo, Suman Kumar

AU - Sharafutdinov, Vladimir A.

PY - 2020/4

Y1 - 2020/4

N2 - The momentum ray transform I k integrates a rank m symmetric tensor field f  over lines of with the weight t k: We give the range characterization for the operator on the Schwartz space of rank m smooth fast decaying tensor fields. In dimensions, the range is characterized by certain differential equations of order which generalize the classical John equations. In the two-dimensional case, the range is characterized by certain integral conditions which generalize the classical Gelfand-Helgason-Ludwig conditions.

AB - The momentum ray transform I k integrates a rank m symmetric tensor field f  over lines of with the weight t k: We give the range characterization for the operator on the Schwartz space of rank m smooth fast decaying tensor fields. In dimensions, the range is characterized by certain differential equations of order which generalize the classical John equations. In the two-dimensional case, the range is characterized by certain integral conditions which generalize the classical Gelfand-Helgason-Ludwig conditions.

KW - inverse problems

KW - John's conditions

KW - momentum ray transform

KW - range characterization

KW - ray transform

KW - tensor analysis

UR - http://www.scopus.com/inward/record.url?scp=85081964028&partnerID=8YFLogxK

U2 - 10.1088/1361-6420/ab6a65

DO - 10.1088/1361-6420/ab6a65

M3 - Article

AN - SCOPUS:85081964028

VL - 36

JO - Inverse Problems

JF - Inverse Problems

SN - 0266-5611

IS - 4

M1 - 045009

ER -

ID: 23877254