Standard

Molecular dynamics simulation of shock-wave loading of copper and titanium. / Bolesta, A. V.; Fomin, V. M.

Proceedings of the XXV Conference on High-Energy Processes in Condensed Matter, HEPCM 2017: Dedicated to the 60th Anniversary of the Khristianovich Institute of Theoretical and Applied Mechanics SB RAS. ред. / Fomin. Том 1893 American Institute of Physics Inc., 2017. 020008 (AIP Conference Proceedings; Том 1893).

Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаяРецензирование

Harvard

Bolesta, AV & Fomin, VM 2017, Molecular dynamics simulation of shock-wave loading of copper and titanium. в Fomin (ред.), Proceedings of the XXV Conference on High-Energy Processes in Condensed Matter, HEPCM 2017: Dedicated to the 60th Anniversary of the Khristianovich Institute of Theoretical and Applied Mechanics SB RAS. Том. 1893, 020008, AIP Conference Proceedings, Том. 1893, American Institute of Physics Inc., 25th Conference on High-Energy Processes in Condensed Matter, HEPCM 2017, Novosibirsk, Российская Федерация, 05.06.2017. https://doi.org/10.1063/1.5007446

APA

Bolesta, A. V., & Fomin, V. M. (2017). Molecular dynamics simulation of shock-wave loading of copper and titanium. в Fomin (Ред.), Proceedings of the XXV Conference on High-Energy Processes in Condensed Matter, HEPCM 2017: Dedicated to the 60th Anniversary of the Khristianovich Institute of Theoretical and Applied Mechanics SB RAS (Том 1893). [020008] (AIP Conference Proceedings; Том 1893). American Institute of Physics Inc.. https://doi.org/10.1063/1.5007446

Vancouver

Bolesta AV, Fomin VM. Molecular dynamics simulation of shock-wave loading of copper and titanium. в Fomin, Редактор, Proceedings of the XXV Conference on High-Energy Processes in Condensed Matter, HEPCM 2017: Dedicated to the 60th Anniversary of the Khristianovich Institute of Theoretical and Applied Mechanics SB RAS. Том 1893. American Institute of Physics Inc. 2017. 020008. (AIP Conference Proceedings). doi: 10.1063/1.5007446

Author

Bolesta, A. V. ; Fomin, V. M. / Molecular dynamics simulation of shock-wave loading of copper and titanium. Proceedings of the XXV Conference on High-Energy Processes in Condensed Matter, HEPCM 2017: Dedicated to the 60th Anniversary of the Khristianovich Institute of Theoretical and Applied Mechanics SB RAS. Редактор / Fomin. Том 1893 American Institute of Physics Inc., 2017. (AIP Conference Proceedings).

BibTeX

@inproceedings{a283b68a0abe43a1810fdfa0880641d2,
title = "Molecular dynamics simulation of shock-wave loading of copper and titanium",
abstract = "At extreme pressures and temperatures common materials form new dense phases with compacted atomic arrangements. By classical molecular dynamics simulation we observe that FCC copper undergo phase transformation to BCC structure. The transition occurs under shock wave loading at the pressures above 80 GPa and corresponding temperatures above 2000 K. We calculate phase diagram, show that at these pressures and low temperature FCC phase of copper is still stable and discuss the thermodynamic reason for phase transformation at high temperature shock wave regime. Titanium forms new hexagonal phase at high pressure as well. We calculate the structure of shock wave in titanium and observe that shock front splits in three parts: elastic, plastic and phase transformation. The possibility of using a phase transition behind a shock wave with further unloading for designing nanocrystalline materials with a reduced grain size is also shown.",
keywords = "POLYCRYSTALLINE COPPER",
author = "Bolesta, {A. V.} and Fomin, {V. M.}",
year = "2017",
month = oct,
day = "26",
doi = "10.1063/1.5007446",
language = "English",
volume = "1893",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
editor = "Fomin",
booktitle = "Proceedings of the XXV Conference on High-Energy Processes in Condensed Matter, HEPCM 2017",
note = "25th Conference on High-Energy Processes in Condensed Matter, HEPCM 2017 ; Conference date: 05-06-2017 Through 09-06-2017",

}

RIS

TY - GEN

T1 - Molecular dynamics simulation of shock-wave loading of copper and titanium

AU - Bolesta, A. V.

AU - Fomin, V. M.

PY - 2017/10/26

Y1 - 2017/10/26

N2 - At extreme pressures and temperatures common materials form new dense phases with compacted atomic arrangements. By classical molecular dynamics simulation we observe that FCC copper undergo phase transformation to BCC structure. The transition occurs under shock wave loading at the pressures above 80 GPa and corresponding temperatures above 2000 K. We calculate phase diagram, show that at these pressures and low temperature FCC phase of copper is still stable and discuss the thermodynamic reason for phase transformation at high temperature shock wave regime. Titanium forms new hexagonal phase at high pressure as well. We calculate the structure of shock wave in titanium and observe that shock front splits in three parts: elastic, plastic and phase transformation. The possibility of using a phase transition behind a shock wave with further unloading for designing nanocrystalline materials with a reduced grain size is also shown.

AB - At extreme pressures and temperatures common materials form new dense phases with compacted atomic arrangements. By classical molecular dynamics simulation we observe that FCC copper undergo phase transformation to BCC structure. The transition occurs under shock wave loading at the pressures above 80 GPa and corresponding temperatures above 2000 K. We calculate phase diagram, show that at these pressures and low temperature FCC phase of copper is still stable and discuss the thermodynamic reason for phase transformation at high temperature shock wave regime. Titanium forms new hexagonal phase at high pressure as well. We calculate the structure of shock wave in titanium and observe that shock front splits in three parts: elastic, plastic and phase transformation. The possibility of using a phase transition behind a shock wave with further unloading for designing nanocrystalline materials with a reduced grain size is also shown.

KW - POLYCRYSTALLINE COPPER

UR - http://www.scopus.com/inward/record.url?scp=85034220091&partnerID=8YFLogxK

U2 - 10.1063/1.5007446

DO - 10.1063/1.5007446

M3 - Conference contribution

AN - SCOPUS:85034220091

VL - 1893

T3 - AIP Conference Proceedings

BT - Proceedings of the XXV Conference on High-Energy Processes in Condensed Matter, HEPCM 2017

A2 - Fomin, null

PB - American Institute of Physics Inc.

T2 - 25th Conference on High-Energy Processes in Condensed Matter, HEPCM 2017

Y2 - 5 June 2017 through 9 June 2017

ER -

ID: 9674379