Standard

Moderate Deviation Principles for the Trajectories of Inhomogeneous Random Walks. / Logachov, A. V.; Mogulskii, A. A.

в: Siberian Mathematical Journal, Том 64, № 1, 2023, стр. 111-127.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Logachov AV, Mogulskii AA. Moderate Deviation Principles for the Trajectories of Inhomogeneous Random Walks. Siberian Mathematical Journal. 2023;64(1):111-127. doi: 10.1134/S0037446623010135

Author

Logachov, A. V. ; Mogulskii, A. A. / Moderate Deviation Principles for the Trajectories of Inhomogeneous Random Walks. в: Siberian Mathematical Journal. 2023 ; Том 64, № 1. стр. 111-127.

BibTeX

@article{94f190de3dce491d847af338305ed3d2,
title = "Moderate Deviation Principles for the Trajectories of Inhomogeneous Random Walks",
abstract = "We obtain some moderate deviation principlesfor the random broken lines constructed fromthe sums of differently distributed independent random variablesunder broad assumptions about moments.",
keywords = "519.2, exponential tightness, large deviation principle, moderate deviation principle, random walk",
author = "Logachov, {A. V.} and Mogulskii, {A. A.}",
note = "The work is supported by the Mathematical Center in Akademgorodok under Agreement 075–15–2022–282 with the Ministry of Science and Higher Education of the Russian Federation.",
year = "2023",
doi = "10.1134/S0037446623010135",
language = "English",
volume = "64",
pages = "111--127",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "1",

}

RIS

TY - JOUR

T1 - Moderate Deviation Principles for the Trajectories of Inhomogeneous Random Walks

AU - Logachov, A. V.

AU - Mogulskii, A. A.

N1 - The work is supported by the Mathematical Center in Akademgorodok under Agreement 075–15–2022–282 with the Ministry of Science and Higher Education of the Russian Federation.

PY - 2023

Y1 - 2023

N2 - We obtain some moderate deviation principlesfor the random broken lines constructed fromthe sums of differently distributed independent random variablesunder broad assumptions about moments.

AB - We obtain some moderate deviation principlesfor the random broken lines constructed fromthe sums of differently distributed independent random variablesunder broad assumptions about moments.

KW - 519.2

KW - exponential tightness

KW - large deviation principle

KW - moderate deviation principle

KW - random walk

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85149030241&origin=inward&txGid=2e513d88d428f321c9029b93c2cbe52b

UR - https://www.mendeley.com/catalogue/b958c331-562f-3ce6-ac5f-ae3d26f8abf9/

U2 - 10.1134/S0037446623010135

DO - 10.1134/S0037446623010135

M3 - Article

VL - 64

SP - 111

EP - 127

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 1

ER -

ID: 56394147