Результаты исследований: Научные публикации в периодических изданиях › статья по материалам конференции › Рецензирование
MHD model of an incompressible polymeric fluid. Linear instability of the resting state. / Blokhin, Alexander; Tkachev, Dmitry.
в: Journal of Physics: Conference Series, Том 1666, № 1, 012007, 20.11.2020.Результаты исследований: Научные публикации в периодических изданиях › статья по материалам конференции › Рецензирование
}
TY - JOUR
T1 - MHD model of an incompressible polymeric fluid. Linear instability of the resting state
AU - Blokhin, Alexander
AU - Tkachev, Dmitry
N1 - Publisher Copyright: © Published under licence by IOP Publishing Ltd. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/11/20
Y1 - 2020/11/20
N2 - We study the linear stability of a resting state for a generalization of the basic rheological Pokrovski-Vinogradov model for flows of solutions and melts of an incompressible viscoelastic polymeric medium to the nonisothermal case under the influence of magnetic field. We prove that the corresponding linearized problem describing magnetohydrodynamic flows of polymers in an infinite plane channel has the following property: for certain values of the conduction current which is given on the electrodes, i.e. on the channel boundaries, the problem has solutions whose amplitude grows exponentially (in the class of functions periodic along the channel).
AB - We study the linear stability of a resting state for a generalization of the basic rheological Pokrovski-Vinogradov model for flows of solutions and melts of an incompressible viscoelastic polymeric medium to the nonisothermal case under the influence of magnetic field. We prove that the corresponding linearized problem describing magnetohydrodynamic flows of polymers in an infinite plane channel has the following property: for certain values of the conduction current which is given on the electrodes, i.e. on the channel boundaries, the problem has solutions whose amplitude grows exponentially (in the class of functions periodic along the channel).
UR - http://www.scopus.com/inward/record.url?scp=85097088004&partnerID=8YFLogxK
U2 - 10.1088/1742-6596/1666/1/012007
DO - 10.1088/1742-6596/1666/1/012007
M3 - Conference article
AN - SCOPUS:85097088004
VL - 1666
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
SN - 1742-6588
IS - 1
M1 - 012007
T2 - 9th International Conference on Lavrentyev Readings on Mathematics, Mechanics and Physics
Y2 - 7 September 2020 through 11 September 2020
ER -
ID: 26205481