Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Metrics ρ, quasimetrics ρ and pseudometrics inf ρs. / Storozhuk, K. V.
в: Conformal Geometry and Dynamics, Том 21, № 10, 01.01.2017, стр. 264-272.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Metrics ρ, quasimetrics ρ and pseudometrics inf ρs
AU - Storozhuk, K. V.
PY - 2017/1/1
Y1 - 2017/1/1
N2 - Let ρ be a metric on a space X and let s≥1. The function ρs(a, b) = ρ(a, b)s is a quasimetric (it need not satisfy the triangle inequality). The function inf ρss(a, b) defined by the condition inf ρs(a, b) = inf(σn 0ρs(zi, zi+1) z0 = a, zn = b) is a pseudometric (i.e., satisfies the triangle inequality but can be degenerate). We show how this degeneracy can be connected with the Hausdorff dimension of the space (X,ρ). We also give some examples showing how the topology of the space (X, infρs) can change as s changes.
AB - Let ρ be a metric on a space X and let s≥1. The function ρs(a, b) = ρ(a, b)s is a quasimetric (it need not satisfy the triangle inequality). The function inf ρss(a, b) defined by the condition inf ρs(a, b) = inf(σn 0ρs(zi, zi+1) z0 = a, zn = b) is a pseudometric (i.e., satisfies the triangle inequality but can be degenerate). We show how this degeneracy can be connected with the Hausdorff dimension of the space (X,ρ). We also give some examples showing how the topology of the space (X, infρs) can change as s changes.
UR - http://www.scopus.com/inward/record.url?scp=85022000669&partnerID=8YFLogxK
U2 - 10.1090/ecgd/311
DO - 10.1090/ecgd/311
M3 - Article
AN - SCOPUS:85022000669
VL - 21
SP - 264
EP - 272
JO - Conformal Geometry and Dynamics
JF - Conformal Geometry and Dynamics
SN - 1088-4173
IS - 10
ER -
ID: 10096129