Standard

Metric Properties of Graphs on Carnot–Carathéodory Spaces with Sub-Lorentzian Structure. / Karmanova, M. B.

в: Doklady Mathematics, Том 101, № 1, 01.01.2020, стр. 36-39.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Karmanova MB. Metric Properties of Graphs on Carnot–Carathéodory Spaces with Sub-Lorentzian Structure. Doklady Mathematics. 2020 янв. 1;101(1):36-39. doi: 10.1134/S1064562420010159

Author

Karmanova, M. B. / Metric Properties of Graphs on Carnot–Carathéodory Spaces with Sub-Lorentzian Structure. в: Doklady Mathematics. 2020 ; Том 101, № 1. стр. 36-39.

BibTeX

@article{2541437531d7438e9991c25aded5a1bb,
title = "Metric Properties of Graphs on Carnot–Carath{\'e}odory Spaces with Sub-Lorentzian Structure",
abstract = "The notion of a sub-Lorentzian structure with multidimensional time on Carnot–Carath{\'e}odory spaces is introduced. It is proved that classes of graph surfaces are spacelike, and a sub-Lorentzian analogue of the area formula is proved.",
keywords = "area formula, Carnot–Carath{\'e}odory space, intrinsic sub-Lorentzian measure, polynomial hc-differential, AREA, HOLDER SURFACES, DIFFERENTIABILITY, Carnot-Caratheodory space, MAPPINGS, GEOMETRY",
author = "Karmanova, {M. B.}",
year = "2020",
month = jan,
day = "1",
doi = "10.1134/S1064562420010159",
language = "English",
volume = "101",
pages = "36--39",
journal = "Doklady Mathematics",
issn = "1064-5624",
publisher = "Maik Nauka-Interperiodica Publishing",
number = "1",

}

RIS

TY - JOUR

T1 - Metric Properties of Graphs on Carnot–Carathéodory Spaces with Sub-Lorentzian Structure

AU - Karmanova, M. B.

PY - 2020/1/1

Y1 - 2020/1/1

N2 - The notion of a sub-Lorentzian structure with multidimensional time on Carnot–Carathéodory spaces is introduced. It is proved that classes of graph surfaces are spacelike, and a sub-Lorentzian analogue of the area formula is proved.

AB - The notion of a sub-Lorentzian structure with multidimensional time on Carnot–Carathéodory spaces is introduced. It is proved that classes of graph surfaces are spacelike, and a sub-Lorentzian analogue of the area formula is proved.

KW - area formula

KW - Carnot–Carathéodory space

KW - intrinsic sub-Lorentzian measure

KW - polynomial hc-differential

KW - AREA

KW - HOLDER SURFACES

KW - DIFFERENTIABILITY

KW - Carnot-Caratheodory space

KW - MAPPINGS

KW - GEOMETRY

UR - http://www.scopus.com/inward/record.url?scp=85084966742&partnerID=8YFLogxK

U2 - 10.1134/S1064562420010159

DO - 10.1134/S1064562420010159

M3 - Article

AN - SCOPUS:85084966742

VL - 101

SP - 36

EP - 39

JO - Doklady Mathematics

JF - Doklady Mathematics

SN - 1064-5624

IS - 1

ER -

ID: 24398132