Standard

Measuring the Rate of Convergence in the Birkhoff Ergodic Theorem. / Kachurovskii, A. G.; Podvigin, I. V.

в: Mathematical Notes, Том 106, № 1-2, 01.07.2019, стр. 52-62.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Kachurovskii AG, Podvigin IV. Measuring the Rate of Convergence in the Birkhoff Ergodic Theorem. Mathematical Notes. 2019 июль 1;106(1-2):52-62. doi: 10.1134/S0001434619070058

Author

Kachurovskii, A. G. ; Podvigin, I. V. / Measuring the Rate of Convergence in the Birkhoff Ergodic Theorem. в: Mathematical Notes. 2019 ; Том 106, № 1-2. стр. 52-62.

BibTeX

@article{fa80c325fae24d54986dcf6b303244bc,
title = "Measuring the Rate of Convergence in the Birkhoff Ergodic Theorem",
abstract = "Estimates of the rate of convergence in the Birkhoff ergodic theorem which hold almost everywhere are considered. For the action of an ergodic automorphism, the existence of such estimates is proved, their structure is studied, and unimprovability questions are considered.",
keywords = "individual ergodic theorem, lattice, rate of convergence in ergodic theorems, return time, unimprovability of estimates",
author = "Kachurovskii, {A. G.} and Podvigin, {I. V.}",
year = "2019",
month = jul,
day = "1",
doi = "10.1134/S0001434619070058",
language = "English",
volume = "106",
pages = "52--62",
journal = "Mathematical Notes",
issn = "0001-4346",
publisher = "PLEIADES PUBLISHING INC",
number = "1-2",

}

RIS

TY - JOUR

T1 - Measuring the Rate of Convergence in the Birkhoff Ergodic Theorem

AU - Kachurovskii, A. G.

AU - Podvigin, I. V.

PY - 2019/7/1

Y1 - 2019/7/1

N2 - Estimates of the rate of convergence in the Birkhoff ergodic theorem which hold almost everywhere are considered. For the action of an ergodic automorphism, the existence of such estimates is proved, their structure is studied, and unimprovability questions are considered.

AB - Estimates of the rate of convergence in the Birkhoff ergodic theorem which hold almost everywhere are considered. For the action of an ergodic automorphism, the existence of such estimates is proved, their structure is studied, and unimprovability questions are considered.

KW - individual ergodic theorem

KW - lattice

KW - rate of convergence in ergodic theorems

KW - return time

KW - unimprovability of estimates

UR - http://www.scopus.com/inward/record.url?scp=85071517314&partnerID=8YFLogxK

U2 - 10.1134/S0001434619070058

DO - 10.1134/S0001434619070058

M3 - Article

AN - SCOPUS:85071517314

VL - 106

SP - 52

EP - 62

JO - Mathematical Notes

JF - Mathematical Notes

SN - 0001-4346

IS - 1-2

ER -

ID: 21472720