Standard

Measurement of the polarisation of single top quarks and antiquarks produced in the t-channel at √s = 13 TeV and bounds on the tWb dipole operator from the ATLAS experiment. / The ATLAS collaboration.

в: Journal of High Energy Physics, Том 2022, № 11, 40, 11.2022.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{6514e47b7e4343619b9c82c5a3a2480c,
title = "Measurement of the polarisation of single top quarks and antiquarks produced in the t-channel at √s = 13 TeV and bounds on the tWb dipole operator from the ATLAS experiment",
abstract = "A simultaneous measurement of the three components of the top-quark and top-antiquark polarisation vectors in t-channel single-top-quark production is presented. This analysis is based on data from proton–proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 139 fb−1, collected with the ATLAS detector at the LHC. Selected events contain exactly one isolated electron or muon, large missing transverse momentum and exactly two jets, one being b-tagged. Stringent selection requirements are applied to discriminate t-channel single-top-quark events from the background contributions. The top-quark and top-antiquark polarisation vectors are measured from the distributions of the direction cosines of the charged-lepton momentum in the top-quark rest frame. The three components of the polarisation vector for the selected top-quark event sample are Px′ = 0.01 ± 0.18, Py′ = −0.029 ± 0.027, Pz′ = 0.91 ± 0.10 and for the top-antiquark event sample they are Px′ = −0.02 ± 0.20, Py′ = −0.007 ± 0.051, Pz′ = 0.79 ± 0.16. Normalised differential cross-sections corrected to a fiducial region at the stable-particle level are presented as a function of the charged-lepton angles for top-quark and top-antiquark events inclusively and separately. These measurements are in agreement with Standard Model predictions. The angular differential cross-sections are used to derive bounds on the complex Wilson coefficient of the dimension-six OtW operator in the framework of an effective field theory. The obtained bounds are CtW ∈ [−0.9, 1.4] and CitW ∈ [−0.8, 0.2], both at 95% confidence level.",
keywords = "Hadron-Hadron Scattering, Top Physics",
author = "{The ATLAS collaboration} and G. Aad and B. Abbott and Abbott, {D. C.} and {Abed Abud}, A. and K. Abeling and Abhayasinghe, {D. K.} and Abidi, {S. H.} and H. Abramowicz and H. Abreu and Y. Abulaiti and {Abusleme Hoffman}, {A. C.} and Acharya, {B. S.} and B. Achkar and L. Adam and {Adam Bourdarios}, C. and L. Adamczyk and L. Adamek and Addepalli, {S. V.} and J. Adelman and A. Adiguzel and S. Adorni and T. Adye and Affolder, {A. A.} and Y. Afik and C. Agapopoulou and Agaras, {M. N.} and J. Agarwala and A. Aggarwal and C. Agheorghiesei and Aguilar-Saavedra, {J. A.} and A. Ahmad and F. Ahmadov and Ahmed, {W. S.} and Anisenkov, {A. V.} and Baldin, {E. M.} and K. Beloborodov and Bobrovnikov, {V. S.} and Buzykaev, {A. R.} and Kazanin, {V. F.} and Kharlamov, {A. G.} and T. Kharlamova and Maslennikov, {A. L.} and Maximov, {D. A.} and Peleganchuk, {S. V.} and P. Podberezko and Rezanova, {O. L.} and Soukharev, {A. M.} and Talyshev, {A. A.} and Tikhonov, {Yu A.} and V. Zhulanov",
note = "Publisher Copyright: {\textcopyright} 2022, The Author(s).",
year = "2022",
month = nov,
doi = "10.1007/JHEP11(2022)040",
language = "English",
volume = "2022",
journal = "Journal of High Energy Physics",
issn = "1029-8479",
publisher = "Springer US",
number = "11",

}

RIS

TY - JOUR

T1 - Measurement of the polarisation of single top quarks and antiquarks produced in the t-channel at √s = 13 TeV and bounds on the tWb dipole operator from the ATLAS experiment

AU - The ATLAS collaboration

AU - Aad, G.

AU - Abbott, B.

AU - Abbott, D. C.

AU - Abed Abud, A.

AU - Abeling, K.

AU - Abhayasinghe, D. K.

AU - Abidi, S. H.

AU - Abramowicz, H.

AU - Abreu, H.

AU - Abulaiti, Y.

AU - Abusleme Hoffman, A. C.

AU - Acharya, B. S.

AU - Achkar, B.

AU - Adam, L.

AU - Adam Bourdarios, C.

AU - Adamczyk, L.

AU - Adamek, L.

AU - Addepalli, S. V.

AU - Adelman, J.

AU - Adiguzel, A.

AU - Adorni, S.

AU - Adye, T.

AU - Affolder, A. A.

AU - Afik, Y.

AU - Agapopoulou, C.

AU - Agaras, M. N.

AU - Agarwala, J.

AU - Aggarwal, A.

AU - Agheorghiesei, C.

AU - Aguilar-Saavedra, J. A.

AU - Ahmad, A.

AU - Ahmadov, F.

AU - Ahmed, W. S.

AU - Anisenkov, A. V.

AU - Baldin, E. M.

AU - Beloborodov, K.

AU - Bobrovnikov, V. S.

AU - Buzykaev, A. R.

AU - Kazanin, V. F.

AU - Kharlamov, A. G.

AU - Kharlamova, T.

AU - Maslennikov, A. L.

AU - Maximov, D. A.

AU - Peleganchuk, S. V.

AU - Podberezko, P.

AU - Rezanova, O. L.

AU - Soukharev, A. M.

AU - Talyshev, A. A.

AU - Tikhonov, Yu A.

AU - Zhulanov, V.

N1 - Publisher Copyright: © 2022, The Author(s).

PY - 2022/11

Y1 - 2022/11

N2 - A simultaneous measurement of the three components of the top-quark and top-antiquark polarisation vectors in t-channel single-top-quark production is presented. This analysis is based on data from proton–proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 139 fb−1, collected with the ATLAS detector at the LHC. Selected events contain exactly one isolated electron or muon, large missing transverse momentum and exactly two jets, one being b-tagged. Stringent selection requirements are applied to discriminate t-channel single-top-quark events from the background contributions. The top-quark and top-antiquark polarisation vectors are measured from the distributions of the direction cosines of the charged-lepton momentum in the top-quark rest frame. The three components of the polarisation vector for the selected top-quark event sample are Px′ = 0.01 ± 0.18, Py′ = −0.029 ± 0.027, Pz′ = 0.91 ± 0.10 and for the top-antiquark event sample they are Px′ = −0.02 ± 0.20, Py′ = −0.007 ± 0.051, Pz′ = 0.79 ± 0.16. Normalised differential cross-sections corrected to a fiducial region at the stable-particle level are presented as a function of the charged-lepton angles for top-quark and top-antiquark events inclusively and separately. These measurements are in agreement with Standard Model predictions. The angular differential cross-sections are used to derive bounds on the complex Wilson coefficient of the dimension-six OtW operator in the framework of an effective field theory. The obtained bounds are CtW ∈ [−0.9, 1.4] and CitW ∈ [−0.8, 0.2], both at 95% confidence level.

AB - A simultaneous measurement of the three components of the top-quark and top-antiquark polarisation vectors in t-channel single-top-quark production is presented. This analysis is based on data from proton–proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 139 fb−1, collected with the ATLAS detector at the LHC. Selected events contain exactly one isolated electron or muon, large missing transverse momentum and exactly two jets, one being b-tagged. Stringent selection requirements are applied to discriminate t-channel single-top-quark events from the background contributions. The top-quark and top-antiquark polarisation vectors are measured from the distributions of the direction cosines of the charged-lepton momentum in the top-quark rest frame. The three components of the polarisation vector for the selected top-quark event sample are Px′ = 0.01 ± 0.18, Py′ = −0.029 ± 0.027, Pz′ = 0.91 ± 0.10 and for the top-antiquark event sample they are Px′ = −0.02 ± 0.20, Py′ = −0.007 ± 0.051, Pz′ = 0.79 ± 0.16. Normalised differential cross-sections corrected to a fiducial region at the stable-particle level are presented as a function of the charged-lepton angles for top-quark and top-antiquark events inclusively and separately. These measurements are in agreement with Standard Model predictions. The angular differential cross-sections are used to derive bounds on the complex Wilson coefficient of the dimension-six OtW operator in the framework of an effective field theory. The obtained bounds are CtW ∈ [−0.9, 1.4] and CitW ∈ [−0.8, 0.2], both at 95% confidence level.

KW - Hadron-Hadron Scattering

KW - Top Physics

UR - http://www.scopus.com/inward/record.url?scp=85144205100&partnerID=8YFLogxK

U2 - 10.1007/JHEP11(2022)040

DO - 10.1007/JHEP11(2022)040

M3 - Article

AN - SCOPUS:85144205100

VL - 2022

JO - Journal of High Energy Physics

JF - Journal of High Energy Physics

SN - 1029-8479

IS - 11

M1 - 40

ER -

ID: 41156265