Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Measurement of the jet mass in high transverse momentum Z(→bb‾)γ production at s=13TeV using the ATLAS detector. / The ATLAS collaboration.
в: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, Том 812, 135991, 10.01.2021.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Measurement of the jet mass in high transverse momentum Z(→bb‾)γ production at s=13TeV using the ATLAS detector
AU - The ATLAS collaboration
AU - Aad, G.
AU - Abbott, B.
AU - Abbott, D. C.
AU - Abdinov, O.
AU - Abed Abud, A.
AU - Abeling, K.
AU - Abhayasinghe, D. K.
AU - Abidi, S. H.
AU - AbouZeid, O. S.
AU - Abraham, N. L.
AU - Abramowicz, H.
AU - Abreu, H.
AU - Abulaiti, Y.
AU - Acharya, B. S.
AU - Achkar, B.
AU - Adachi, S.
AU - Adam, L.
AU - Adam Bourdarios, C.
AU - Adamczyk, L.
AU - Adamek, L.
AU - Adelman, J.
AU - Adersberger, M.
AU - Adiguzel, A.
AU - Adorni, S.
AU - Adye, T.
AU - Affolder, A. A.
AU - Afik, Y.
AU - Agapopoulou, C.
AU - Agaras, M. N.
AU - Aggarwal, A.
AU - Agheorghiesei, C.
AU - Aguilar-Saavedra, J. A.
AU - Ahmadov, F.
AU - Anisenkov, A. V.
AU - Baldin, E. M.
AU - Beloborodov, K.
AU - Bobrovnikov, V. S.
AU - Buzykaev, A. R.
AU - Kazanin, V. F.
AU - Kharlamov, A. G.
AU - Kharlamova, T.
AU - Maslennikov, A. L.
AU - Maximov, D. A.
AU - Peleganchuk, S. V.
AU - Podberezko, P.
AU - Rezanova, O. L.
AU - Soukharev, A. M.
AU - Talyshev, A. A.
AU - Tikhonov, Yu A.
AU - Zhulanov, V.
N1 - Funding Information: We acknowledge the support of ANPCyT , Argentina; YerPhI , Armenia; ARC , Australia; BMWFW and FWF , Austria; ANAS , Azerbaijan; SSTC , Belarus; CNPq and FAPESP , Brazil; NSERC , NRC and CFI , Canada; CERN ; ANID , Chile; CAS , MOST and NSFC , China; COLCIENCIAS , Colombia; MSMT CR , MPO CR and VSC CR , Czech Republic; DNRF and DNSRC , Denmark; IN2P3-CNRS and CEA-DRF/IRFU , France; SRNSFG , Georgia; BMBF , HGF and MPG , Germany; GSRT , Greece; RGC and Hong Kong SAR , China; ISF and Benoziyo Center , Israel; INFN , Italy; MEXT and JSPS , Japan; CNRST , Morocco; NWO , Netherlands; RCN , Norway; MNiSW and NCN , Poland; FCT , Portugal; MNE/IFA , Romania; JINR ; MES of Russia and NRC KI , Russian Federation; MESTD , Serbia; MSSR , Slovakia; ARRS and MIZŠ , Slovenia; DST/NRF , South Africa; MICINN , Spain; SRC and Wallenberg Foundation , Sweden; SERI , SNSF and Cantons of Bern and Geneva , Switzerland; MOST , Taiwan; TAEK , Turkey; STFC , United Kingdom; DOE and NSF , United States of America. In addition, individual groups and members have received support from BCKDF , Canarie , Compute Canada , CRC and IVADO , Canada; Beijing Municipal Science & Technology Commission , China; COST , ERC , ERDF , Horizon 2020 and Marie Skłodowska-Curie Actions , European Union; Investissements d'Avenir Labex , Investissements d'Avenir Idex and ANR , France; DFG and AvH Foundation , Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF , Greece; BSF-NSF and GIF , Israel; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana , Spain; Göran Gustafssons Stiftelse , Sweden; The Royal Society and Leverhulme Trust , United Kingdom. Funding Information: We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ?, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, Canarie, Compute Canada, CRC and IVADO, Canada; Beijing Municipal Science & Technology Commission, China; COST, ERC, ERDF, Horizon 2020 and Marie Sk?odowska-Curie Actions, European Union; Investissements d'Avenir Labex, Investissements d'Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; G?ran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [73]. Publisher Copyright: © 2020 The Author
PY - 2021/1/10
Y1 - 2021/1/10
N2 - The integrated fiducial cross-section and unfolded differential jet mass spectrum of high transverse momentum Z→bb‾ decays are measured in Zγ events in proton–proton collisions at s=13TeV. The data analysed were collected between 2015 and 2016 with the ATLAS detector at the Large Hadron Collider and correspond to an integrated luminosity of 36.1fb−1. Photons are required to have a transverse momentum pT>175GeV. The Z→bb‾ decay is reconstructed using a jet with pT>200GeV, found with the anti-kt R=1.0 jet algorithm, and groomed to remove soft and wide-angle radiation and to mitigate contributions from the underlying event and additional proton–proton collisions. Two different but related measurements are performed using two jet grooming definitions for reconstructing the Z→bb‾ decay: trimming and soft drop. These algorithms differ in their experimental and phenomenological implications regarding jet mass reconstruction and theoretical precision. To identify Z bosons, b-tagged R=0.2 track-jets matched to the groomed large-R calorimeter jet are used as a proxy for the b-quarks. The signal yield is determined from fits of the data-driven background templates to the different jet mass distributions for the two grooming methods. Integrated fiducial cross-sections and unfolded jet mass spectra for each grooming method are compared with leading-order theoretical predictions. The results are found to be in good agreement with Standard Model expectations within the current statistical and systematic uncertainties.
AB - The integrated fiducial cross-section and unfolded differential jet mass spectrum of high transverse momentum Z→bb‾ decays are measured in Zγ events in proton–proton collisions at s=13TeV. The data analysed were collected between 2015 and 2016 with the ATLAS detector at the Large Hadron Collider and correspond to an integrated luminosity of 36.1fb−1. Photons are required to have a transverse momentum pT>175GeV. The Z→bb‾ decay is reconstructed using a jet with pT>200GeV, found with the anti-kt R=1.0 jet algorithm, and groomed to remove soft and wide-angle radiation and to mitigate contributions from the underlying event and additional proton–proton collisions. Two different but related measurements are performed using two jet grooming definitions for reconstructing the Z→bb‾ decay: trimming and soft drop. These algorithms differ in their experimental and phenomenological implications regarding jet mass reconstruction and theoretical precision. To identify Z bosons, b-tagged R=0.2 track-jets matched to the groomed large-R calorimeter jet are used as a proxy for the b-quarks. The signal yield is determined from fits of the data-driven background templates to the different jet mass distributions for the two grooming methods. Integrated fiducial cross-sections and unfolded jet mass spectra for each grooming method are compared with leading-order theoretical predictions. The results are found to be in good agreement with Standard Model expectations within the current statistical and systematic uncertainties.
UR - http://www.scopus.com/inward/record.url?scp=85108391778&partnerID=8YFLogxK
U2 - 10.1016/j.physletb.2020.135991
DO - 10.1016/j.physletb.2020.135991
M3 - Article
AN - SCOPUS:85108391778
VL - 812
JO - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
JF - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
SN - 0370-2693
M1 - 135991
ER -
ID: 34335772