Standard

Measurement of the associated production of a Higgs boson decaying into b-quarks with a vector boson at high transverse momentum in pp collisions at s=13 TeV with the ATLAS detector. / The ATLAS collaboration.

в: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, Том 816, 136204, 10.05.2021.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

The ATLAS collaboration. Measurement of the associated production of a Higgs boson decaying into b-quarks with a vector boson at high transverse momentum in pp collisions at s=13 TeV with the ATLAS detector. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. 2021 май 10;816:136204. doi: 10.1016/j.physletb.2021.136204

Author

The ATLAS collaboration. / Measurement of the associated production of a Higgs boson decaying into b-quarks with a vector boson at high transverse momentum in pp collisions at s=13 TeV with the ATLAS detector. в: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. 2021 ; Том 816.

BibTeX

@article{52d725c2c3f04ab6a2bf92312c0004ce,
title = "Measurement of the associated production of a Higgs boson decaying into b-quarks with a vector boson at high transverse momentum in pp collisions at s=13 TeV with the ATLAS detector",
abstract = "The associated production of a Higgs boson with a W or Z boson decaying into leptons and where the Higgs boson decays to a bb¯ pair is measured in the high vector-boson transverse momentum regime, above 250 GeV, with the ATLAS detector. The analysed data, corresponding to an integrated luminosity of 139 fb−1, were collected in proton–proton collisions at the Large Hadron Collider between 2015 and 2018 at a centre-of-mass energy of s=13 TeV. The measured signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model, is 0.72−0.36+0.39 corresponding to an observed (expected) significance of 2.1 (2.7) standard deviations. Cross-sections of associated production of a Higgs boson decaying into b quark pairs with a W or Z gauge boson, decaying into leptons, are measured in two exclusive vector boson transverse momentum regions, 250–400 GeV and above 400 GeV, and interpreted as constraints on anomalous couplings in the framework of a Standard Model effective field theory.",
author = "{The ATLAS collaboration} and G. Aad and B. Abbott and Abbott, {D. C.} and {Abed Abud}, A. and K. Abeling and Abhayasinghe, {D. K.} and Abidi, {S. H.} and AbouZeid, {O. S.} and Abraham, {N. L.} and H. Abramowicz and H. Abreu and Y. Abulaiti and Acharya, {B. S.} and B. Achkar and L. Adam and {Adam Bourdarios}, C. and L. Adamczyk and L. Adamek and J. Adelman and M. Adersberger and A. Adiguzel and S. Adorni and T. Adye and Affolder, {A. A.} and Y. Afik and C. Agapopoulou and Agaras, {M. N.} and A. Aggarwal and C. Agheorghiesei and Aguilar-Saavedra, {J. A.} and A. Ahmad and F. Ahmadov and Ahmed, {W. S.} and Anisenkov, {A. V.} and Baldin, {E. M.} and K. Beloborodov and Bobrovnikov, {V. S.} and Buzykaev, {A. R.} and Kazanin, {V. F.} and Kharlamov, {A. G.} and T. Kharlamova and Maslennikov, {A. L.} and Maximov, {D. A.} and Peleganchuk, {S. V.} and P. Podberezko and Rezanova, {O. L.} and Soukharev, {A. M.} and Talyshev, {A. A.} and Tikhonov, {Yu A.} and V. Zhulanov",
note = "Funding Information: We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ?, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada, CRC and IVADO, Canada; Beijing Municipal Science & Technology Commission, China; COST, ERC, ERDF, Horizon 2020 and Marie Sk?odowska-Curie Actions, European Union; Investissements d'Avenir Labex, Investissements d'Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; G?ran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [115]. Funding Information: We acknowledge the support of ANPCyT , Argentina; YerPhI , Armenia; ARC , Australia; BMWFW and FWF , Austria; ANAS , Azerbaijan; SSTC , Belarus; CNPq and FAPESP , Brazil; NSERC , NRC and CFI , Canada; CERN ; ANID , Chile; CAS , MOST and NSFC , China; COLCIENCIAS , Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC , Denmark; IN2P3-CNRS and CEA-DRF/IRFU , France; SRNSFG , Georgia; BMBF , HGF and MPG , Germany; GSRT , Greece; RGC and Hong Kong SAR , China; ISF and Benoziyo Center , Israel; INFN , Italy; MEXT and JSPS , Japan; CNRST , Morocco; NWO , Netherlands; RCN , Norway; MNiSW and NCN , Poland; FCT , Portugal; MNE/IFA , Romania; JINR ; MES of Russia and NRC KI , Russian Federation; MESTD , Serbia; MSSR , Slovakia; ARRS and MIZ{\v S} , Slovenia; DST/NRF , South Africa; MICINN , Spain; SRC and Wallenberg Foundation , Sweden; SERI , SNSF and Cantons of Bern and Geneva , Switzerland; MOST , Taiwan; TAEK , Turkey; STFC , United Kingdom; DOE and NSF , United States of America. In addition, individual groups and members have received support from BCKDF , CANARIE , Compute Canada , CRC and IVADO , Canada; Beijing Municipal Science & Technology Commission , China; COST , ERC , ERDF , Horizon 2020 and Marie Sk{\l}odowska-Curie Actions , European Union; Investissements d'Avenir Labex , Investissements d'Avenir Idex and ANR , France; DFG and AvH Foundation , Germany; Herakleitos , Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF , Israel; La Caixa Banking Foundation , CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; G{\"o}ran Gustafssons Stiftelse , Sweden; The Royal Society and Leverhulme Trust , United Kingdom. Publisher Copyright: {\textcopyright} 2021 The Author",
year = "2021",
month = may,
day = "10",
doi = "10.1016/j.physletb.2021.136204",
language = "English",
volume = "816",
journal = "Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics",
issn = "0370-2693",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Measurement of the associated production of a Higgs boson decaying into b-quarks with a vector boson at high transverse momentum in pp collisions at s=13 TeV with the ATLAS detector

AU - The ATLAS collaboration

AU - Aad, G.

AU - Abbott, B.

AU - Abbott, D. C.

AU - Abed Abud, A.

AU - Abeling, K.

AU - Abhayasinghe, D. K.

AU - Abidi, S. H.

AU - AbouZeid, O. S.

AU - Abraham, N. L.

AU - Abramowicz, H.

AU - Abreu, H.

AU - Abulaiti, Y.

AU - Acharya, B. S.

AU - Achkar, B.

AU - Adam, L.

AU - Adam Bourdarios, C.

AU - Adamczyk, L.

AU - Adamek, L.

AU - Adelman, J.

AU - Adersberger, M.

AU - Adiguzel, A.

AU - Adorni, S.

AU - Adye, T.

AU - Affolder, A. A.

AU - Afik, Y.

AU - Agapopoulou, C.

AU - Agaras, M. N.

AU - Aggarwal, A.

AU - Agheorghiesei, C.

AU - Aguilar-Saavedra, J. A.

AU - Ahmad, A.

AU - Ahmadov, F.

AU - Ahmed, W. S.

AU - Anisenkov, A. V.

AU - Baldin, E. M.

AU - Beloborodov, K.

AU - Bobrovnikov, V. S.

AU - Buzykaev, A. R.

AU - Kazanin, V. F.

AU - Kharlamov, A. G.

AU - Kharlamova, T.

AU - Maslennikov, A. L.

AU - Maximov, D. A.

AU - Peleganchuk, S. V.

AU - Podberezko, P.

AU - Rezanova, O. L.

AU - Soukharev, A. M.

AU - Talyshev, A. A.

AU - Tikhonov, Yu A.

AU - Zhulanov, V.

N1 - Funding Information: We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ?, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada, CRC and IVADO, Canada; Beijing Municipal Science & Technology Commission, China; COST, ERC, ERDF, Horizon 2020 and Marie Sk?odowska-Curie Actions, European Union; Investissements d'Avenir Labex, Investissements d'Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; G?ran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [115]. Funding Information: We acknowledge the support of ANPCyT , Argentina; YerPhI , Armenia; ARC , Australia; BMWFW and FWF , Austria; ANAS , Azerbaijan; SSTC , Belarus; CNPq and FAPESP , Brazil; NSERC , NRC and CFI , Canada; CERN ; ANID , Chile; CAS , MOST and NSFC , China; COLCIENCIAS , Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC , Denmark; IN2P3-CNRS and CEA-DRF/IRFU , France; SRNSFG , Georgia; BMBF , HGF and MPG , Germany; GSRT , Greece; RGC and Hong Kong SAR , China; ISF and Benoziyo Center , Israel; INFN , Italy; MEXT and JSPS , Japan; CNRST , Morocco; NWO , Netherlands; RCN , Norway; MNiSW and NCN , Poland; FCT , Portugal; MNE/IFA , Romania; JINR ; MES of Russia and NRC KI , Russian Federation; MESTD , Serbia; MSSR , Slovakia; ARRS and MIZŠ , Slovenia; DST/NRF , South Africa; MICINN , Spain; SRC and Wallenberg Foundation , Sweden; SERI , SNSF and Cantons of Bern and Geneva , Switzerland; MOST , Taiwan; TAEK , Turkey; STFC , United Kingdom; DOE and NSF , United States of America. In addition, individual groups and members have received support from BCKDF , CANARIE , Compute Canada , CRC and IVADO , Canada; Beijing Municipal Science & Technology Commission , China; COST , ERC , ERDF , Horizon 2020 and Marie Skłodowska-Curie Actions , European Union; Investissements d'Avenir Labex , Investissements d'Avenir Idex and ANR , France; DFG and AvH Foundation , Germany; Herakleitos , Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF , Israel; La Caixa Banking Foundation , CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse , Sweden; The Royal Society and Leverhulme Trust , United Kingdom. Publisher Copyright: © 2021 The Author

PY - 2021/5/10

Y1 - 2021/5/10

N2 - The associated production of a Higgs boson with a W or Z boson decaying into leptons and where the Higgs boson decays to a bb¯ pair is measured in the high vector-boson transverse momentum regime, above 250 GeV, with the ATLAS detector. The analysed data, corresponding to an integrated luminosity of 139 fb−1, were collected in proton–proton collisions at the Large Hadron Collider between 2015 and 2018 at a centre-of-mass energy of s=13 TeV. The measured signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model, is 0.72−0.36+0.39 corresponding to an observed (expected) significance of 2.1 (2.7) standard deviations. Cross-sections of associated production of a Higgs boson decaying into b quark pairs with a W or Z gauge boson, decaying into leptons, are measured in two exclusive vector boson transverse momentum regions, 250–400 GeV and above 400 GeV, and interpreted as constraints on anomalous couplings in the framework of a Standard Model effective field theory.

AB - The associated production of a Higgs boson with a W or Z boson decaying into leptons and where the Higgs boson decays to a bb¯ pair is measured in the high vector-boson transverse momentum regime, above 250 GeV, with the ATLAS detector. The analysed data, corresponding to an integrated luminosity of 139 fb−1, were collected in proton–proton collisions at the Large Hadron Collider between 2015 and 2018 at a centre-of-mass energy of s=13 TeV. The measured signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model, is 0.72−0.36+0.39 corresponding to an observed (expected) significance of 2.1 (2.7) standard deviations. Cross-sections of associated production of a Higgs boson decaying into b quark pairs with a W or Z gauge boson, decaying into leptons, are measured in two exclusive vector boson transverse momentum regions, 250–400 GeV and above 400 GeV, and interpreted as constraints on anomalous couplings in the framework of a Standard Model effective field theory.

UR - http://www.scopus.com/inward/record.url?scp=85110134111&partnerID=8YFLogxK

U2 - 10.1016/j.physletb.2021.136204

DO - 10.1016/j.physletb.2021.136204

M3 - Article

AN - SCOPUS:85110134111

VL - 816

JO - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

JF - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

SN - 0370-2693

M1 - 136204

ER -

ID: 34335341