Standard

Master integrals for e+e− → 2γ process at large energies and angles. / Ли, Роман Николаевич; Стоцкий, Вячеслав Андреевич.

в: Journal of High Energy Physics, Том 2024, № 12, 106, 12.2024.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{31bd7137c8504203868f174313c9315a,
title = "Master integrals for e+e− → 2γ process at large energies and angles",
abstract = "We calculate master integrals for the two-loop QED corrections to e+e− → 2γ in terms of generalized power series with respect to electron mass. The coefficients of this series are expressed via Goncharov{\textquoteright}s polylogarithms. Our approach exploits a number of modern multiloop methods: IBP reduction, differential equations for master integrals, Frobenius method, reduction to ϵ-form, and DRA method.",
author = "Ли, {Роман Николаевич} and Стоцкий, {Вячеслав Андреевич}",
year = "2024",
month = dec,
language = "English",
volume = "2024",
journal = "Journal of High Energy Physics",
issn = "1029-8479",
publisher = "Springer US",
number = "12",

}

RIS

TY - JOUR

T1 - Master integrals for e+e− → 2γ process at large energies and angles

AU - Ли, Роман Николаевич

AU - Стоцкий, Вячеслав Андреевич

PY - 2024/12

Y1 - 2024/12

N2 - We calculate master integrals for the two-loop QED corrections to e+e− → 2γ in terms of generalized power series with respect to electron mass. The coefficients of this series are expressed via Goncharov’s polylogarithms. Our approach exploits a number of modern multiloop methods: IBP reduction, differential equations for master integrals, Frobenius method, reduction to ϵ-form, and DRA method.

AB - We calculate master integrals for the two-loop QED corrections to e+e− → 2γ in terms of generalized power series with respect to electron mass. The coefficients of this series are expressed via Goncharov’s polylogarithms. Our approach exploits a number of modern multiloop methods: IBP reduction, differential equations for master integrals, Frobenius method, reduction to ϵ-form, and DRA method.

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85212062985&origin=inward&txGid=c43d280d23b2e69285e1cca145c49da7

M3 - Article

VL - 2024

JO - Journal of High Energy Physics

JF - Journal of High Energy Physics

SN - 1029-8479

IS - 12

M1 - 106

ER -

ID: 61280249