Standard

Lyapunov instability of the stationary flows of polymeric fluid with constant flow rate. / Blokhin, Alexander M.; Tkachev, Dmitry L.

в: ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, Том 101, № 12, e202000384, 12.2021.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Blokhin, AM & Tkachev, DL 2021, 'Lyapunov instability of the stationary flows of polymeric fluid with constant flow rate', ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, Том. 101, № 12, e202000384. https://doi.org/10.1002/zamm.202000384

APA

Blokhin, A. M., & Tkachev, D. L. (2021). Lyapunov instability of the stationary flows of polymeric fluid with constant flow rate. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 101(12), [e202000384]. https://doi.org/10.1002/zamm.202000384

Vancouver

Blokhin AM, Tkachev DL. Lyapunov instability of the stationary flows of polymeric fluid with constant flow rate. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 2021 дек.;101(12):e202000384. Epub 2021 июль 10. doi: 10.1002/zamm.202000384

Author

Blokhin, Alexander M. ; Tkachev, Dmitry L. / Lyapunov instability of the stationary flows of polymeric fluid with constant flow rate. в: ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 2021 ; Том 101, № 12.

BibTeX

@article{eb830b808216437a8f8d56e5d71787a0,
title = "Lyapunov instability of the stationary flows of polymeric fluid with constant flow rate",
abstract = "We study a rheological Pokrovski-Vinogradov model for the flows of solutions and melts of incompressible viscoelastic polymeric medium in case of a flow in an infinite plane channel with perforated walls. We prove the linear Lyapunov instability of the base solution with the constant flow rate in a perturbation class, periodic with respect to the variable, changing along the channel wall.",
keywords = "base solution, incompressible viscoelastic polymeric medium, infinite plane channel with perforated walls, linear Lyapunov instability, rheological correlation",
author = "Blokhin, {Alexander M.} and Tkachev, {Dmitry L.}",
note = "Funding Information: Authors are grateful to A.V. Yegitov for the help in formatting the paper. Blokhin, A. M. Lyapunov instability of the stationary flows of polymeric fluid with constant flow rate / A. M. Blokhin, D. L. Tkachev // ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. – 2021. Publisher Copyright: {\textcopyright} 2021 Wiley-VCH GmbH.",
year = "2021",
month = dec,
doi = "10.1002/zamm.202000384",
language = "English",
volume = "101",
journal = "ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik",
issn = "0044-2267",
publisher = "Wiley-VCH Verlag",
number = "12",

}

RIS

TY - JOUR

T1 - Lyapunov instability of the stationary flows of polymeric fluid with constant flow rate

AU - Blokhin, Alexander M.

AU - Tkachev, Dmitry L.

N1 - Funding Information: Authors are grateful to A.V. Yegitov for the help in formatting the paper. Blokhin, A. M. Lyapunov instability of the stationary flows of polymeric fluid with constant flow rate / A. M. Blokhin, D. L. Tkachev // ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. – 2021. Publisher Copyright: © 2021 Wiley-VCH GmbH.

PY - 2021/12

Y1 - 2021/12

N2 - We study a rheological Pokrovski-Vinogradov model for the flows of solutions and melts of incompressible viscoelastic polymeric medium in case of a flow in an infinite plane channel with perforated walls. We prove the linear Lyapunov instability of the base solution with the constant flow rate in a perturbation class, periodic with respect to the variable, changing along the channel wall.

AB - We study a rheological Pokrovski-Vinogradov model for the flows of solutions and melts of incompressible viscoelastic polymeric medium in case of a flow in an infinite plane channel with perforated walls. We prove the linear Lyapunov instability of the base solution with the constant flow rate in a perturbation class, periodic with respect to the variable, changing along the channel wall.

KW - base solution

KW - incompressible viscoelastic polymeric medium

KW - infinite plane channel with perforated walls

KW - linear Lyapunov instability

KW - rheological correlation

UR - http://www.scopus.com/inward/record.url?scp=85109380301&partnerID=8YFLogxK

UR - https://www.elibrary.ru/item.asp?id=46871581

U2 - 10.1002/zamm.202000384

DO - 10.1002/zamm.202000384

M3 - Article

AN - SCOPUS:85109380301

VL - 101

JO - ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik

JF - ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik

SN - 0044-2267

IS - 12

M1 - e202000384

ER -

ID: 34152635