Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Lorentzian Manifolds Close to Euclidean Space. / Berestovskii, V. N.
в: Siberian Mathematical Journal, Том 60, № 2, 01.03.2019, стр. 235-248.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Lorentzian Manifolds Close to Euclidean Space
AU - Berestovskii, V. N.
N1 - Publisher Copyright: © 2019, Pleiades Publishing, Ltd.
PY - 2019/3/1
Y1 - 2019/3/1
N2 - We study the Lorentzian manifolds M 1 , M 2 , M 3 , and M 4 obtained by small changes of the standard Euclidean metric on ℝ 4 with the punctured origin O. The spaces M 1 and M 4 are closed isotropic space-time models. The manifolds M 3 and M 4 (respectively, M 1 and M 2 ) are geodesically (non)complete; M 1 are M 4 are globally hyperbolic, while M 2 and M 3 are not chronological. We found the Lie algebras of isometry and homothety groups for all manifolds; the curvature, Ricci, Einstein, Weyl, and energy-momentum tensors. It is proved that M 1 and M 4 are conformally flat, while M 2 and M 3 are not conformally flat and their Weyl tensor has the first Petrov type.
AB - We study the Lorentzian manifolds M 1 , M 2 , M 3 , and M 4 obtained by small changes of the standard Euclidean metric on ℝ 4 with the punctured origin O. The spaces M 1 and M 4 are closed isotropic space-time models. The manifolds M 3 and M 4 (respectively, M 1 and M 2 ) are geodesically (non)complete; M 1 are M 4 are globally hyperbolic, while M 2 and M 3 are not chronological. We found the Lie algebras of isometry and homothety groups for all manifolds; the curvature, Ricci, Einstein, Weyl, and energy-momentum tensors. It is proved that M 1 and M 4 are conformally flat, while M 2 and M 3 are not conformally flat and their Weyl tensor has the first Petrov type.
KW - closed isotropic model
KW - density
KW - Einstein tensor
KW - energy-momentum tensor
KW - homothety group
KW - isometry group
KW - pressure
KW - Weyl tensor
UR - http://www.scopus.com/inward/record.url?scp=85064807004&partnerID=8YFLogxK
U2 - 10.1134/S0037446619020058
DO - 10.1134/S0037446619020058
M3 - Article
AN - SCOPUS:85064807004
VL - 60
SP - 235
EP - 248
JO - Siberian Mathematical Journal
JF - Siberian Mathematical Journal
SN - 0037-4466
IS - 2
ER -
ID: 19630582