Standard

Linear Stability of an Incompressible Polymer Fluid at Rest. / Blokhin, A. M.; Goldin, A. Yu.

в: Journal of Mathematical Sciences (United States), Том 230, № 1, 01.04.2018, стр. 14-24.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Blokhin, AM & Goldin, AY 2018, 'Linear Stability of an Incompressible Polymer Fluid at Rest', Journal of Mathematical Sciences (United States), Том. 230, № 1, стр. 14-24. https://doi.org/10.1007/s10958-018-3722-3

APA

Blokhin, A. M., & Goldin, A. Y. (2018). Linear Stability of an Incompressible Polymer Fluid at Rest. Journal of Mathematical Sciences (United States), 230(1), 14-24. https://doi.org/10.1007/s10958-018-3722-3

Vancouver

Blokhin AM, Goldin AY. Linear Stability of an Incompressible Polymer Fluid at Rest. Journal of Mathematical Sciences (United States). 2018 апр. 1;230(1):14-24. doi: 10.1007/s10958-018-3722-3

Author

Blokhin, A. M. ; Goldin, A. Yu. / Linear Stability of an Incompressible Polymer Fluid at Rest. в: Journal of Mathematical Sciences (United States). 2018 ; Том 230, № 1. стр. 14-24.

BibTeX

@article{8d6129a93b40447d9a57e0a5c8876ca7,
title = "Linear Stability of an Incompressible Polymer Fluid at Rest",
abstract = "We prove that the linearized equations of an incompressible polymer fluid have no partial solutions increasing with time.",
author = "Blokhin, {A. M.} and Goldin, {A. Yu}",
year = "2018",
month = apr,
day = "1",
doi = "10.1007/s10958-018-3722-3",
language = "English",
volume = "230",
pages = "14--24",
journal = "Journal of Mathematical Sciences (United States)",
issn = "1072-3374",
publisher = "Springer Nature",
number = "1",

}

RIS

TY - JOUR

T1 - Linear Stability of an Incompressible Polymer Fluid at Rest

AU - Blokhin, A. M.

AU - Goldin, A. Yu

PY - 2018/4/1

Y1 - 2018/4/1

N2 - We prove that the linearized equations of an incompressible polymer fluid have no partial solutions increasing with time.

AB - We prove that the linearized equations of an incompressible polymer fluid have no partial solutions increasing with time.

UR - http://www.scopus.com/inward/record.url?scp=85042528047&partnerID=8YFLogxK

U2 - 10.1007/s10958-018-3722-3

DO - 10.1007/s10958-018-3722-3

M3 - Article

AN - SCOPUS:85042528047

VL - 230

SP - 14

EP - 24

JO - Journal of Mathematical Sciences (United States)

JF - Journal of Mathematical Sciences (United States)

SN - 1072-3374

IS - 1

ER -

ID: 10421021