Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Linear instability of the resting state for the MHD model of an incomressible polymeric fluid. / Blokhin, Alexander; Tkachev, Dmitry.
International Conference on the Methods of Aerophysical Research, ICMAR 2020. ред. / Vasily M. Fomin; Alexander Shiplyuk. American Institute of Physics Inc., 2021. 040057 (AIP Conference Proceedings; Том 2351).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - Linear instability of the resting state for the MHD model of an incomressible polymeric fluid
AU - Blokhin, Alexander
AU - Tkachev, Dmitry
N1 - Funding Information: The study was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. 0314-2019-0013) and additionally supported by the RFBR, project number 19-01-00261a. Publisher Copyright: © 2021 Author(s). Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/5/24
Y1 - 2021/5/24
N2 - We study the linear stability of a resting state for a generalization of the basic rheological Pokrovski-Vinogradov model for flows of solutions and melts of an incompressible viscoelastic polymeric medium to the nonisothermal case under the influence of magnetic field. We prove that the corresponding linearized problem describing magnetohydrodynamic flows of polymers in an infinite plane channel has the following property: for certain values of the conduction current which is given on the electrodes, i.e. on the channel boundaries, the problem has solutions whose amplitude grows exponentially (in the class of functions periodic along the channel).
AB - We study the linear stability of a resting state for a generalization of the basic rheological Pokrovski-Vinogradov model for flows of solutions and melts of an incompressible viscoelastic polymeric medium to the nonisothermal case under the influence of magnetic field. We prove that the corresponding linearized problem describing magnetohydrodynamic flows of polymers in an infinite plane channel has the following property: for certain values of the conduction current which is given on the electrodes, i.e. on the channel boundaries, the problem has solutions whose amplitude grows exponentially (in the class of functions periodic along the channel).
UR - http://www.scopus.com/inward/record.url?scp=85107192183&partnerID=8YFLogxK
U2 - 10.1063/5.0052068
DO - 10.1063/5.0052068
M3 - Conference contribution
AN - SCOPUS:85107192183
T3 - AIP Conference Proceedings
BT - International Conference on the Methods of Aerophysical Research, ICMAR 2020
A2 - Fomin, Vasily M.
A2 - Shiplyuk, Alexander
PB - American Institute of Physics Inc.
T2 - 20th International Conference on the Methods of Aerophysical Research, ICMAR 2020
Y2 - 1 November 2020 through 7 November 2020
ER -
ID: 28876597