Standard

Left Ideals of Semiprime Novikov Algebras. / Kotenkov, N. V.; Panasenko, A. S.

в: Siberian Mathematical Journal, Том 67, № 1, 01.2026, стр. 93-98.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Kotenkov, NV & Panasenko, AS 2026, 'Left Ideals of Semiprime Novikov Algebras', Siberian Mathematical Journal, Том. 67, № 1, стр. 93-98. https://doi.org/10.1134/S003744662601009X

APA

Kotenkov, N. V., & Panasenko, A. S. (2026). Left Ideals of Semiprime Novikov Algebras. Siberian Mathematical Journal, 67(1), 93-98. https://doi.org/10.1134/S003744662601009X

Vancouver

Kotenkov NV, Panasenko AS. Left Ideals of Semiprime Novikov Algebras. Siberian Mathematical Journal. 2026 янв.;67(1):93-98. doi: 10.1134/S003744662601009X

Author

Kotenkov, N. V. ; Panasenko, A. S. / Left Ideals of Semiprime Novikov Algebras. в: Siberian Mathematical Journal. 2026 ; Том 67, № 1. стр. 93-98.

BibTeX

@article{e03b73269fa1474a8a4eb9cc93eaabdc,
title = "Left Ideals of Semiprime Novikov Algebras",
abstract = "We study left ideals of Novikov algebras.It is shown that the center and the associative center of an ideal of a semiprime Novikov algebra are inherited from the whole algebra.We prove that in a prime nonassociative Novikov algebra, every left ideal that does not lie in the right annihilator of the algebra is itself a prime nonassociative Novikov algebra.We also obtain a description of left ideals of a semiprime Novikov algebra.It is shown that a minimal left ideal of a Novikov algebra lies either in the center or in the associator ideal of the algebra.",
keywords = "512.554, Novikov algebra, annihilator, minimal ideal, prime algebra, semiprime algebra",
author = "Kotenkov, {N. V.} and Panasenko, {A. S.}",
note = "Kotenkov, N.V., Panasenko, A.S. Left Ideals of Semiprime Novikov Algebras. Sib Math J 67, 93–98 (2026). https://doi.org/10.1134/S003744662601009X The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2026–0017).",
year = "2026",
month = jan,
doi = "10.1134/S003744662601009X",
language = "English",
volume = "67",
pages = "93--98",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "Pleiades Publishing",
number = "1",

}

RIS

TY - JOUR

T1 - Left Ideals of Semiprime Novikov Algebras

AU - Kotenkov, N. V.

AU - Panasenko, A. S.

N1 - Kotenkov, N.V., Panasenko, A.S. Left Ideals of Semiprime Novikov Algebras. Sib Math J 67, 93–98 (2026). https://doi.org/10.1134/S003744662601009X The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2026–0017).

PY - 2026/1

Y1 - 2026/1

N2 - We study left ideals of Novikov algebras.It is shown that the center and the associative center of an ideal of a semiprime Novikov algebra are inherited from the whole algebra.We prove that in a prime nonassociative Novikov algebra, every left ideal that does not lie in the right annihilator of the algebra is itself a prime nonassociative Novikov algebra.We also obtain a description of left ideals of a semiprime Novikov algebra.It is shown that a minimal left ideal of a Novikov algebra lies either in the center or in the associator ideal of the algebra.

AB - We study left ideals of Novikov algebras.It is shown that the center and the associative center of an ideal of a semiprime Novikov algebra are inherited from the whole algebra.We prove that in a prime nonassociative Novikov algebra, every left ideal that does not lie in the right annihilator of the algebra is itself a prime nonassociative Novikov algebra.We also obtain a description of left ideals of a semiprime Novikov algebra.It is shown that a minimal left ideal of a Novikov algebra lies either in the center or in the associator ideal of the algebra.

KW - 512.554

KW - Novikov algebra

KW - annihilator

KW - minimal ideal

KW - prime algebra

KW - semiprime algebra

UR - https://www.scopus.com/pages/publications/105028574289

UR - https://www.mendeley.com/catalogue/5506e7b0-7af4-32a1-b5ec-b1abbcee501f/

U2 - 10.1134/S003744662601009X

DO - 10.1134/S003744662601009X

M3 - Article

VL - 67

SP - 93

EP - 98

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 1

ER -

ID: 74322953