Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Laser Wakefield Acceleration in a Plasma Channel. / Dorozhkina, M. S.; Baluev, K. V.; Kutergin, D. D. и др.
в: Bulletin of the Lebedev Physics Institute, Том 50, 10.2023, стр. S715-S723.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Laser Wakefield Acceleration in a Plasma Channel
AU - Dorozhkina, M. S.
AU - Baluev, K. V.
AU - Kutergin, D. D.
AU - Lotov, I. K.
AU - Minakov, V. A.
AU - Spitsyn, R. I.
AU - Tuev, P. V.
AU - Lotov, K. V.
N1 - This study was supported by a scientific program of the National Center for Physics and Mathematics. Публикация для корректировки.
PY - 2023/10
Y1 - 2023/10
N2 - It is shown by numerical simulations that, if a laser pulse from the eXawatt Center for Extreme Light Studies (Sarov) is used as a driver for a laser wakefield accelerator, an electron bunch with a charge of 50 pC can be accelerated to energy of 100 GeV with an energy spread of less than 1%. To this end, it is necessary to form a plasma channel 70 m long with a characteristic radius of 200 μm and a plasma density of 3 × 1015 cm–3 on the axis. In a denser plasma, the acceleration rate is higher, but the acceleration length and the resulting energy are smaller. The accelerator parameters can be numerically optimized using a quasistatic model describing the laser pulse in terms of its envelope, which reduces the computation time by several orders of magnitude as compared to complete models.
AB - It is shown by numerical simulations that, if a laser pulse from the eXawatt Center for Extreme Light Studies (Sarov) is used as a driver for a laser wakefield accelerator, an electron bunch with a charge of 50 pC can be accelerated to energy of 100 GeV with an energy spread of less than 1%. To this end, it is necessary to form a plasma channel 70 m long with a characteristic radius of 200 μm and a plasma density of 3 × 1015 cm–3 on the axis. In a denser plasma, the acceleration rate is higher, but the acceleration length and the resulting energy are smaller. The accelerator parameters can be numerically optimized using a quasistatic model describing the laser pulse in terms of its envelope, which reduces the computation time by several orders of magnitude as compared to complete models.
KW - laser acceleration
KW - numerical simulations
KW - plasma acceleration
KW - plasma channel
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85173703276&origin=inward&txGid=9e642ec24efe86f790cfa02996ecab48
UR - https://www.mendeley.com/catalogue/256d5383-e01c-3133-a9f1-eee87e341884/
U2 - 10.3103/S1068335623180057
DO - 10.3103/S1068335623180057
M3 - Article
VL - 50
SP - S715-S723
JO - Bulletin of the Lebedev Physics Institute
JF - Bulletin of the Lebedev Physics Institute
SN - 1068-3356
ER -
ID: 59548767