Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Large Deviation Principle for Terminating Multidimensional Compound Renewal Processes with Application to Polymer Pinning Models. / Logachov, A. V.; Mogulskii, A. A.; Prokopenko, E. I.
в: Problems of Information Transmission, Том 58, № 2, 04.2022, стр. 144-159.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Large Deviation Principle for Terminating Multidimensional Compound Renewal Processes with Application to Polymer Pinning Models
AU - Logachov, A. V.
AU - Mogulskii, A. A.
AU - Prokopenko, E. I.
N1 - Publisher Copyright: © 2022, Pleiades Publishing, Inc.
PY - 2022/4
Y1 - 2022/4
N2 - We obtain a large deviations principle for terminating multidimensional compound renewal processes. We also obtain the asymptotics of large deviations for the case where a Gibbs change of the original probability measure takes place. The random processes mentioned in the paper are widely used in polymer pinning models.
AB - We obtain a large deviations principle for terminating multidimensional compound renewal processes. We also obtain the asymptotics of large deviations for the case where a Gibbs change of the original probability measure takes place. The random processes mentioned in the paper are widely used in polymer pinning models.
KW - compound renewal process
KW - Gibbs change of the probability measure
KW - large deviations principle
KW - polymer pinning models
KW - rate function
UR - http://www.scopus.com/inward/record.url?scp=85134080433&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/1a6e5202-b4d5-3769-bf2e-21d288d2a79d/
U2 - 10.1134/S0032946022020053
DO - 10.1134/S0032946022020053
M3 - Article
AN - SCOPUS:85134080433
VL - 58
SP - 144
EP - 159
JO - Problems of Information Transmission
JF - Problems of Information Transmission
SN - 0032-9460
IS - 2
ER -
ID: 36777797