Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Large deviation principle for multidimensional first compound renewal processes in the phase space. / Mogulskii, Anatolii Alfredovich; Prokopenko, Evgenii Igorevich.
в: Сибирские электронные математические известия, Том 16, 101, 01.11.2019, стр. 1464-1477.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Large deviation principle for multidimensional first compound renewal processes in the phase space
AU - Mogulskii, Anatolii Alfredovich
AU - Prokopenko, Evgenii Igorevich
PY - 2019/11/1
Y1 - 2019/11/1
N2 - We obtain the large deviation principles for multidimensional first compound renewal processes Z(t) in the phase space Rd, for this we find and investigate the rate function DZ(α). Also we find asymptotics for the Laplace transform of this process when the time goes to infinity, for this we find and investigate the so-called fundamental function AZ(μ).
AB - We obtain the large deviation principles for multidimensional first compound renewal processes Z(t) in the phase space Rd, for this we find and investigate the rate function DZ(α). Also we find asymptotics for the Laplace transform of this process when the time goes to infinity, for this we find and investigate the so-called fundamental function AZ(μ).
KW - Compound multidimensional renewal process
KW - Cramer's condition
KW - Deviation (rate) function
KW - Fundamental function
KW - Large deviations
KW - Renewal measure
KW - Second deviation (rate) function
KW - large deviations
KW - INTEGRO-LOCAL THEOREMS
KW - compound multidimensional renewal process
KW - fundamental function
KW - second deviation (rate) function
KW - renewal measure
KW - deviation (rate) function
UR - http://www.scopus.com/inward/record.url?scp=85083236685&partnerID=8YFLogxK
U2 - 10.33048/SEMI.2019.16.101
DO - 10.33048/SEMI.2019.16.101
M3 - Article
AN - SCOPUS:85083236685
VL - 16
SP - 1464
EP - 1477
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
M1 - 101
ER -
ID: 24068158