Standard

Kinetic simulation of the Rayleigh-Taylor instability. / Poleshkin, S. O.; Kudryavtsev, A. N.

High-Energy Processes in Condensed Matter, HEPCM 2020: Proceedings of the XXVII Conference on High-Energy Processes in Condensed Matter, Dedicated to the 90th Anniversary of the Birth of RI Soloukhin. ред. / Vasily M. Fomin. American Institute of Physics Inc., 2020. 030010 (AIP Conference Proceedings; Том 2288).

Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаяРецензирование

Harvard

Poleshkin, SO & Kudryavtsev, AN 2020, Kinetic simulation of the Rayleigh-Taylor instability. в VM Fomin (ред.), High-Energy Processes in Condensed Matter, HEPCM 2020: Proceedings of the XXVII Conference on High-Energy Processes in Condensed Matter, Dedicated to the 90th Anniversary of the Birth of RI Soloukhin., 030010, AIP Conference Proceedings, Том. 2288, American Institute of Physics Inc., 27th Conference on High-Energy Processes in Condensed Matter, HEPCM 2020, Novosibirsk, Российская Федерация, 29.06.2020. https://doi.org/10.1063/5.0028881

APA

Poleshkin, S. O., & Kudryavtsev, A. N. (2020). Kinetic simulation of the Rayleigh-Taylor instability. в V. M. Fomin (Ред.), High-Energy Processes in Condensed Matter, HEPCM 2020: Proceedings of the XXVII Conference on High-Energy Processes in Condensed Matter, Dedicated to the 90th Anniversary of the Birth of RI Soloukhin [030010] (AIP Conference Proceedings; Том 2288). American Institute of Physics Inc.. https://doi.org/10.1063/5.0028881

Vancouver

Poleshkin SO, Kudryavtsev AN. Kinetic simulation of the Rayleigh-Taylor instability. в Fomin VM, Редактор, High-Energy Processes in Condensed Matter, HEPCM 2020: Proceedings of the XXVII Conference on High-Energy Processes in Condensed Matter, Dedicated to the 90th Anniversary of the Birth of RI Soloukhin. American Institute of Physics Inc. 2020. 030010. (AIP Conference Proceedings). doi: 10.1063/5.0028881

Author

Poleshkin, S. O. ; Kudryavtsev, A. N. / Kinetic simulation of the Rayleigh-Taylor instability. High-Energy Processes in Condensed Matter, HEPCM 2020: Proceedings of the XXVII Conference on High-Energy Processes in Condensed Matter, Dedicated to the 90th Anniversary of the Birth of RI Soloukhin. Редактор / Vasily M. Fomin. American Institute of Physics Inc., 2020. (AIP Conference Proceedings).

BibTeX

@inproceedings{1e4a1ca9f8414ea39192c2987d01fc00,
title = "Kinetic simulation of the Rayleigh-Taylor instability",
abstract = "With the rapid development of numerical methods and computer systems in recent years, it has become possible to model complex multidimensional flows on the basis of the Boltzmann equation. For the first time, numerical simulations of the development of Rayleigh-Taylor instability is performed based on the solution of both the Boltzmann equation and the model kinetic equation. This paper is aimed at the identification of kinetic effects and estimation of the degree of flow non-equilibrium. For this purpose, the distribution functions obtained from kinetic simulations are compared with the Navier-Stokes distribution function.",
author = "Poleshkin, {S. O.} and Kudryavtsev, {A. N.}",
note = "Publisher Copyright: {\textcopyright} 2020 Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.; 27th Conference on High-Energy Processes in Condensed Matter, HEPCM 2020 ; Conference date: 29-06-2020 Through 03-07-2020",
year = "2020",
month = oct,
day = "26",
doi = "10.1063/5.0028881",
language = "English",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
editor = "Fomin, {Vasily M.}",
booktitle = "High-Energy Processes in Condensed Matter, HEPCM 2020",

}

RIS

TY - GEN

T1 - Kinetic simulation of the Rayleigh-Taylor instability

AU - Poleshkin, S. O.

AU - Kudryavtsev, A. N.

N1 - Publisher Copyright: © 2020 Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2020/10/26

Y1 - 2020/10/26

N2 - With the rapid development of numerical methods and computer systems in recent years, it has become possible to model complex multidimensional flows on the basis of the Boltzmann equation. For the first time, numerical simulations of the development of Rayleigh-Taylor instability is performed based on the solution of both the Boltzmann equation and the model kinetic equation. This paper is aimed at the identification of kinetic effects and estimation of the degree of flow non-equilibrium. For this purpose, the distribution functions obtained from kinetic simulations are compared with the Navier-Stokes distribution function.

AB - With the rapid development of numerical methods and computer systems in recent years, it has become possible to model complex multidimensional flows on the basis of the Boltzmann equation. For the first time, numerical simulations of the development of Rayleigh-Taylor instability is performed based on the solution of both the Boltzmann equation and the model kinetic equation. This paper is aimed at the identification of kinetic effects and estimation of the degree of flow non-equilibrium. For this purpose, the distribution functions obtained from kinetic simulations are compared with the Navier-Stokes distribution function.

UR - http://www.scopus.com/inward/record.url?scp=85096692641&partnerID=8YFLogxK

U2 - 10.1063/5.0028881

DO - 10.1063/5.0028881

M3 - Conference contribution

AN - SCOPUS:85096692641

T3 - AIP Conference Proceedings

BT - High-Energy Processes in Condensed Matter, HEPCM 2020

A2 - Fomin, Vasily M.

PB - American Institute of Physics Inc.

T2 - 27th Conference on High-Energy Processes in Condensed Matter, HEPCM 2020

Y2 - 29 June 2020 through 3 July 2020

ER -

ID: 26098436