Standard

Karyotypes and recombination patterns of the Common Swift (Apus apus Linnaeus, 1758) and Eurasian Hobby (Falco subbuteo Linnaeus, 1758). / Malinovskaya, Lyubov; Shnaider, Elena; Borodin, Pavel и др.

в: Avian Research, Том 9, № 1, 4, 02.02.2018.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{7a3ebd29e256445bade5b1dcd438feba,
title = "Karyotypes and recombination patterns of the Common Swift (Apus apus Linnaeus, 1758) and Eurasian Hobby (Falco subbuteo Linnaeus, 1758)",
abstract = "Background: Meiotic recombination is an important source of genetic variability. Studies on mammals demonstrate a substantial interspecies variation in overall recombination rate, which is dependent mainly on chromosome (2n) and chromosome arm number (FN). Bird karyotypes are very conservative with 2n being about 78-82 and FN being 80-90 in most species. However, some families such as Apodidae (swifts) and Falconidae (falcons) show a substantial karyotypic variation. In this study, we describe the somatic and pachytene karyotypes of the male Common Swift (Apus apus) and the pachytene karyotype of the male Eurasian Hobby (Falco subbuteo) and estimate the overall number and distribution of recombination events along the chromosomes of these species. Methods: The somatic karyotype was examined in bone marrow cells. Pachytene chromosome spreads were prepared from spermatocytes of adult males. Synaptonemal complexes and mature recombination nodules were visualized with antibodies to SYCP3 and MLH1 proteins correspondingly. Results: The karyotype of the Common Swift consists of three metacentric, three submetacentric and two telocentric macrochromosomes and 31 telocentric microchromosomes (2n = 78; FN = 90). It differs from the karyotypes of related Apodidae species described previously. The karyotype of the Eurasian Hobby contains one metacentric and 13 telocentric macrochromosomes and one metacentric and ten telocentric microchromosomes (2n = 50; FN = 54) and is similar to that described previously in 2n, but differs for macrochromosome morphology. Despite an about 40% difference in 2n and FN, these species have almost the same number of recombination nodules per genome: 51.4 ± 4.3 in the swift and 51.1 ± 6.7 in the hobby. The distribution of the recombination nodules along the macrochromosomes was extremely polarized in the Common Swift and was rather even in the Eurasian Hobby. Conclusions: This study adds two more species to the short list of birds in which the number and distribution of recombination nodules have been examined. Our data confirm that recombination rate in birds is substantially higher than that in mammals, but shows rather a low interspecies variability. Even a substantial reduction in chromosome number does not lead to any substantial decrease in recombination rate. More data from different taxa are required to draw statistically supported conclusions about the evolution of recombination in birds.",
keywords = "Avian chromosomes, Crossingover, MLH1, Recombination nodules, SYCP3, Synaptonemal complex, SYNAPTONEMAL COMPLEX, CHROMOSOMES, EQUAL RECOMBINATION, EVOLUTION, IMMUNOCYTOLOGICAL ANALYSIS, MLH1 FOCI, CHICKEN, BIRDS, MEIOTIC RECOMBINATION, MAMMALS",
author = "Lyubov Malinovskaya and Elena Shnaider and Pavel Borodin and Anna Torgasheva",
year = "2018",
month = feb,
day = "2",
doi = "10.1186/s40657-018-0096-7",
language = "English",
volume = "9",
journal = "Avian Research",
issn = "2053-7166",
publisher = "Springer International Publishing AG",
number = "1",

}

RIS

TY - JOUR

T1 - Karyotypes and recombination patterns of the Common Swift (Apus apus Linnaeus, 1758) and Eurasian Hobby (Falco subbuteo Linnaeus, 1758)

AU - Malinovskaya, Lyubov

AU - Shnaider, Elena

AU - Borodin, Pavel

AU - Torgasheva, Anna

PY - 2018/2/2

Y1 - 2018/2/2

N2 - Background: Meiotic recombination is an important source of genetic variability. Studies on mammals demonstrate a substantial interspecies variation in overall recombination rate, which is dependent mainly on chromosome (2n) and chromosome arm number (FN). Bird karyotypes are very conservative with 2n being about 78-82 and FN being 80-90 in most species. However, some families such as Apodidae (swifts) and Falconidae (falcons) show a substantial karyotypic variation. In this study, we describe the somatic and pachytene karyotypes of the male Common Swift (Apus apus) and the pachytene karyotype of the male Eurasian Hobby (Falco subbuteo) and estimate the overall number and distribution of recombination events along the chromosomes of these species. Methods: The somatic karyotype was examined in bone marrow cells. Pachytene chromosome spreads were prepared from spermatocytes of adult males. Synaptonemal complexes and mature recombination nodules were visualized with antibodies to SYCP3 and MLH1 proteins correspondingly. Results: The karyotype of the Common Swift consists of three metacentric, three submetacentric and two telocentric macrochromosomes and 31 telocentric microchromosomes (2n = 78; FN = 90). It differs from the karyotypes of related Apodidae species described previously. The karyotype of the Eurasian Hobby contains one metacentric and 13 telocentric macrochromosomes and one metacentric and ten telocentric microchromosomes (2n = 50; FN = 54) and is similar to that described previously in 2n, but differs for macrochromosome morphology. Despite an about 40% difference in 2n and FN, these species have almost the same number of recombination nodules per genome: 51.4 ± 4.3 in the swift and 51.1 ± 6.7 in the hobby. The distribution of the recombination nodules along the macrochromosomes was extremely polarized in the Common Swift and was rather even in the Eurasian Hobby. Conclusions: This study adds two more species to the short list of birds in which the number and distribution of recombination nodules have been examined. Our data confirm that recombination rate in birds is substantially higher than that in mammals, but shows rather a low interspecies variability. Even a substantial reduction in chromosome number does not lead to any substantial decrease in recombination rate. More data from different taxa are required to draw statistically supported conclusions about the evolution of recombination in birds.

AB - Background: Meiotic recombination is an important source of genetic variability. Studies on mammals demonstrate a substantial interspecies variation in overall recombination rate, which is dependent mainly on chromosome (2n) and chromosome arm number (FN). Bird karyotypes are very conservative with 2n being about 78-82 and FN being 80-90 in most species. However, some families such as Apodidae (swifts) and Falconidae (falcons) show a substantial karyotypic variation. In this study, we describe the somatic and pachytene karyotypes of the male Common Swift (Apus apus) and the pachytene karyotype of the male Eurasian Hobby (Falco subbuteo) and estimate the overall number and distribution of recombination events along the chromosomes of these species. Methods: The somatic karyotype was examined in bone marrow cells. Pachytene chromosome spreads were prepared from spermatocytes of adult males. Synaptonemal complexes and mature recombination nodules were visualized with antibodies to SYCP3 and MLH1 proteins correspondingly. Results: The karyotype of the Common Swift consists of three metacentric, three submetacentric and two telocentric macrochromosomes and 31 telocentric microchromosomes (2n = 78; FN = 90). It differs from the karyotypes of related Apodidae species described previously. The karyotype of the Eurasian Hobby contains one metacentric and 13 telocentric macrochromosomes and one metacentric and ten telocentric microchromosomes (2n = 50; FN = 54) and is similar to that described previously in 2n, but differs for macrochromosome morphology. Despite an about 40% difference in 2n and FN, these species have almost the same number of recombination nodules per genome: 51.4 ± 4.3 in the swift and 51.1 ± 6.7 in the hobby. The distribution of the recombination nodules along the macrochromosomes was extremely polarized in the Common Swift and was rather even in the Eurasian Hobby. Conclusions: This study adds two more species to the short list of birds in which the number and distribution of recombination nodules have been examined. Our data confirm that recombination rate in birds is substantially higher than that in mammals, but shows rather a low interspecies variability. Even a substantial reduction in chromosome number does not lead to any substantial decrease in recombination rate. More data from different taxa are required to draw statistically supported conclusions about the evolution of recombination in birds.

KW - Avian chromosomes

KW - Crossingover

KW - MLH1

KW - Recombination nodules

KW - SYCP3

KW - Synaptonemal complex

KW - SYNAPTONEMAL COMPLEX

KW - CHROMOSOMES

KW - EQUAL RECOMBINATION

KW - EVOLUTION

KW - IMMUNOCYTOLOGICAL ANALYSIS

KW - MLH1 FOCI

KW - CHICKEN

KW - BIRDS

KW - MEIOTIC RECOMBINATION

KW - MAMMALS

UR - http://www.scopus.com/inward/record.url?scp=85041590892&partnerID=8YFLogxK

U2 - 10.1186/s40657-018-0096-7

DO - 10.1186/s40657-018-0096-7

M3 - Article

AN - SCOPUS:85041590892

VL - 9

JO - Avian Research

JF - Avian Research

SN - 2053-7166

IS - 1

M1 - 4

ER -

ID: 10453146