Результаты исследований: Научные публикации в периодических изданиях › обзорная статья › Рецензирование
Italian carbonatite system: From mantle to ore-deposit. / Stoppa, Francesco; Schiazza, Mariangela; Rosatelli, Gianluigi и др.
в: Ore Geology Reviews, Том 114, 103041, 01.11.2019.Результаты исследований: Научные публикации в периодических изданиях › обзорная статья › Рецензирование
}
TY - JOUR
T1 - Italian carbonatite system: From mantle to ore-deposit
AU - Stoppa, Francesco
AU - Schiazza, Mariangela
AU - Rosatelli, Gianluigi
AU - Castorina, Francesca
AU - Sharygin, Victor V.
AU - Ambrosio, Francesco Antonio
AU - Vicentini, Noemi
N1 - Publisher Copyright: © 2019 The Authors
PY - 2019/11/1
Y1 - 2019/11/1
N2 - A new discovery of carbonatites at Pianciano, Ficoreto and Forcinelle in the Roman Region demonstrates that Italian carbonatites are not just isolated, mantle xenoliths-bearing, primitive diatremic rocks but also evolved subtype fluor-calciocarbonatite (F ~ 10 wt%) associated with fluor ore (F ~ 30 wt%). New data constrain a multi-stage petrogenetic process, 1-orthomagmatic, 2-carbothermal, 3-hydrothermal. Petrography and geochemistry are conducive to processes of immiscibility and decarbonation, rather than assimilation and crystal fractionation. A CO2-rich, ultra-alkaline magma is inferred to produce immiscible melilite leucitite and carbonatite melts, at lithospheric mantle depths. At the crustal level and in the presence of massive CO2 exsolution, decarbonation reactions may be the dominant processes. Decarbonation consumes dolomite and produces calcite and periclase, which, in turn, react with silica to produce forsterite and Ca silicates (monticellite, melilite, andradite). Under carbothermal conditions, carbonate breakdown releases Sr, Ba and LREE; F and S become concentrated in residual fluids, allowing precipitation of fluorite and barite, as well as celestine and anhydrite. Fluor-calciocarbonatite is the best candidate to exsolve fluids able to deposit fluor ore, which has a smaller volume. At the hydrothermal stage, REE concentration and temperature dropping allow the formation of LREEF2+ and LREECO3+ ligands, which control the precipitation of interstitial LREE fluorcarbonate and silicates: (bastnäsite-(Ce), Ce(CO3)F and britholite-(Ce), (Ce,Ca)5(SiO4,PO4)3(OH,F). Vanadates such as wakefieldite-(Ce), CeVO4, vanadinite, Pb5(VO4)3Cl and coronadite Pb(Mn4+ 6 Mn3+ 2)O16 characterise the matrix. At temperatures of ≤100 °C analcime, halloysite, quartz, barren calcite, and zeolites (K-Ca) precipitate in expansion fractures, veins and dyke aureoles.
AB - A new discovery of carbonatites at Pianciano, Ficoreto and Forcinelle in the Roman Region demonstrates that Italian carbonatites are not just isolated, mantle xenoliths-bearing, primitive diatremic rocks but also evolved subtype fluor-calciocarbonatite (F ~ 10 wt%) associated with fluor ore (F ~ 30 wt%). New data constrain a multi-stage petrogenetic process, 1-orthomagmatic, 2-carbothermal, 3-hydrothermal. Petrography and geochemistry are conducive to processes of immiscibility and decarbonation, rather than assimilation and crystal fractionation. A CO2-rich, ultra-alkaline magma is inferred to produce immiscible melilite leucitite and carbonatite melts, at lithospheric mantle depths. At the crustal level and in the presence of massive CO2 exsolution, decarbonation reactions may be the dominant processes. Decarbonation consumes dolomite and produces calcite and periclase, which, in turn, react with silica to produce forsterite and Ca silicates (monticellite, melilite, andradite). Under carbothermal conditions, carbonate breakdown releases Sr, Ba and LREE; F and S become concentrated in residual fluids, allowing precipitation of fluorite and barite, as well as celestine and anhydrite. Fluor-calciocarbonatite is the best candidate to exsolve fluids able to deposit fluor ore, which has a smaller volume. At the hydrothermal stage, REE concentration and temperature dropping allow the formation of LREEF2+ and LREECO3+ ligands, which control the precipitation of interstitial LREE fluorcarbonate and silicates: (bastnäsite-(Ce), Ce(CO3)F and britholite-(Ce), (Ce,Ca)5(SiO4,PO4)3(OH,F). Vanadates such as wakefieldite-(Ce), CeVO4, vanadinite, Pb5(VO4)3Cl and coronadite Pb(Mn4+ 6 Mn3+ 2)O16 characterise the matrix. At temperatures of ≤100 °C analcime, halloysite, quartz, barren calcite, and zeolites (K-Ca) precipitate in expansion fractures, veins and dyke aureoles.
KW - Carbonatite petrogenetic model
KW - Fluor-calciocarbonatite
KW - Immiscibility
KW - Italian carbonatites
KW - Melt decarbonation
KW - REE
KW - LIQUID IMMISCIBILITY
KW - COMPLEX
KW - REE DEPOSITS
KW - PIAN-DI-CELLE
KW - SICHUAN PROVINCE
KW - IMMISCIBLE CARBONATITE
KW - STABLE-ISOTOPE
KW - MELT INCLUSIONS
KW - MINERAL CHEMISTRY
KW - VULTURE VOLCANO
UR - http://www.scopus.com/inward/record.url?scp=85072772667&partnerID=8YFLogxK
U2 - 10.1016/j.oregeorev.2019.103041
DO - 10.1016/j.oregeorev.2019.103041
M3 - Review article
AN - SCOPUS:85072772667
VL - 114
JO - Ore Geology Reviews
JF - Ore Geology Reviews
SN - 0169-1368
M1 - 103041
ER -
ID: 21754723