Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Investigation of Overexponential Growth of Mean Particle Flux with Multiplication in Random Medium. / Lotova, G. Z.; Mikhailov, G. A.
в: Numerical Analysis and Applications, Том 16, № 4, 12.2023, стр. 337-347.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Investigation of Overexponential Growth of Mean Particle Flux with Multiplication in Random Medium
AU - Lotova, G. Z.
AU - Mikhailov, G. A.
N1 - This work was performed under state assignment of Institute of Computational Mathematics and Mathematical Geophysics SB RAS (project no. 0251-2021-0002). Публикация для корректировки.
PY - 2023/12
Y1 - 2023/12
N2 - A new correlative-grid approximation for a homogeneous isotropic random field of density is introduced for effective numerical-analytical investigation of overexponential growth of the mean flux of particles with multiplication in a random medium. In this case, the complexity of realization of a particle trajectory is independent of the correlation scale. For the correlative-grid approximation, the possibility of a Gaussian asymptotics of the average rate of particle multiplication is proved for a random field of limited density. It ensures a superexponential growth of the flux in some initial time interval. An estimate of further overexponential flux growth is constructed based on some test computations.
AB - A new correlative-grid approximation for a homogeneous isotropic random field of density is introduced for effective numerical-analytical investigation of overexponential growth of the mean flux of particles with multiplication in a random medium. In this case, the complexity of realization of a particle trajectory is independent of the correlation scale. For the correlative-grid approximation, the possibility of a Gaussian asymptotics of the average rate of particle multiplication is proved for a random field of limited density. It ensures a superexponential growth of the flux in some initial time interval. An estimate of further overexponential flux growth is constructed based on some test computations.
KW - grid approximation
KW - numerical statistical simulation
KW - overexponential asymptotics
KW - particle flux
KW - random medium
KW - the Voronoi mosaic
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85178906676&origin=inward&txGid=82003a8ca1f9f79895684f4fdf02b732
UR - https://www.mendeley.com/catalogue/bf8be75c-8e4b-3cc8-a498-52f0c62a6da0/
U2 - 10.1134/S1995423923040055
DO - 10.1134/S1995423923040055
M3 - Article
VL - 16
SP - 337
EP - 347
JO - Numerical Analysis and Applications
JF - Numerical Analysis and Applications
SN - 1995-4239
IS - 4
ER -
ID: 59543165